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Preface 

Combinatorics is a branch of mathematics dealing with discretely struc­
tured problems. Its scope of study includes selections and arrangements 
of objects with prescribed conditions, configurations involving a set of 
nodes interconnected by edges (called graphs), and designs of experi­
mental schemes according to specified rules. Combinatorial problems 
and their applications can be found not only in various branches of 
mathematics, but also in other disciplines such as engineering, computer 
science, operational research, management sciences and the life sciences. 
Since computers require discrete formulation of problems, combinato­
rial techniques have become essential and powerful tools for engineers 
and applied scientists, in particular, in the area of designing and ana­
lyzing algorithms for various problems which range from designing the 
itineraries for a shipping company to sequencing the human genome in 
the life sciences. 

The counting problem, which seeks to find out how many arrange­
ments there are in a particular situation, is one of the basic problems 
in combinatorics. Counting has been used in the social sciences for cal­
culating the Shapley-Shubik power index which measures the power of 
a player in a decision-making body (such as a shareholders' meeting, 
a parliament or the UN Security Council). In Chemistry, Cayley used 
graphs to count the number of isomers of saturated hydrocarbons; while 
Harary and Read counted the number of certain organic compounds 
built up from benzene rings by representing them as configurations of 



VI Counting 

hexagons joined together along a common edge. In Genetics, by count­
ing all possibilities for a DNA chain made up of the four bases, scientists 
arrive at an astoundingly large number and so are able to understand 
the tremendous possible variation in genetic makeup. Counting has 
been used as well to study the primary and secondary structures of 
RNA. 

This booklet is intended as an introduction to basic counting tech­
niques for upper secondary and junior college students, and teachers. 
We believe that it would also be of interest to those who appreciate 
mathematics and to avid puzzle-solvers. 

The variety of problems and applications in this booklet is not only 
useful for building up an aptitude in counting but is a rich source for 
honing basic skills and techniques in general problem-solving. Many of 
the problems evade routine and, as a desired result, force the reader to 
think hard in his attempts to solve them. In fact, the diligent reader will 
often discover more than one way of solving a particular problem, which 
is indeed an important awareness in problem-solving. This booklet thus 
helps to provide students an early start to learning problem-solving 
heuristics and thinking skills. 

The first two chapters cover two basic principles, namely, the 
Addition Principle and the Multiplication Principle. Both principles 
are commonly used in counting, even by those who would never count 
themselves as students of mathematics! However, these principles have 
equally likely been misunderstood and misused. These chapters help to 
avoid this by stating clearly the conditions under which the principles 
can be applied. Chapter 3 introduces the concepts of combinations and 
permutations by viewing them as subsets and arrangements of a set of 
objects, while Chapter 4 provides various applications of the concepts 
learnt. 

Many apparently complex counting problems can be solved with just 
"a change of perspective". Chapter 5 presents an important principle 
along this line, i.e. the Bijection Principle; while Chapter 6 introduces 
a very useful perspective to which many counting problems can be con­
verted to, i.e. the distribution of balls into boxes. The next three chap­
ters flesh out the Bijection Principle and the distribution perspective 
with a number of applications and variations. 
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In Chapter 3, we introduce a family of numbers which are denoted 
by (™) or C™. The last three chapters put this family of numbers in 
the context of the binomial expansion and Pascal's Triangle. A num­
ber of useful identities are proven and problems are posed where these 
identities surprisingly appear. 

Chapter 13 closes this booklet with a collection of interesting prob­
lems in which the approaches to solving them appear as applications of 
one or more concepts learnt in all the earlier sections. Problems in this 
and other sections marked with (C) are reproduced by permission of the 
University of Cambridge Local Examinations Syndicate and those with 
(AIME) are from the American Invitational Mathematics Examination. 
We would like to express our gratitude to the above organizations for 
allowing us to include these problems in the book. 

This booklet is based on the first six from a series of articles on 
counting that first appeared in Mathematical Medley, a publication 
of the Singapore Mathematical Society. We would like to thank Tan 
Ban Pin who greatly helped the first author with the original series. 
Many thanks also to our colleagues, Dong Fengming, Lee Tuo Yeong and 
Toh Tin Lam for reading through the draft and checking through the 
problems — any mistakes that remain are ours alone. 

For those who find this introductory work interesting and would like 
to know more about the subject, a recommended list of publications for 
further reading is provided at the end of this book. 

Koh Khee Meng 
Tay Eng Guan 
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Chapter 1 

The Addition Principle 

In the process of solving a counting problem, there are two very simple 
but basic principles that we always apply. They are called the Addition 
Principle and the Multiplication Principle. In this chapter, we shall 
introduce the former and illustrate how it is applied. 

Let us begin with a simple problem. Consider a 4-element set A = 
{a,b,c,d}. In how many ways can we form a 2-element subset of A1 
This can be answered easily by simply listing all the 2-element subsets: 

{a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d} . 

Thus, the answer is 6. 
Let us try a slightly more complicated problem. 

Example 1.1 A group of students consists of 4 boys and 3 girls. How 
many ways are there to select 2 students of the same sex from the groupl 

Solution As the problem requires us to select students of the same 
sex, we naturally divide our consideration into two distinct cases: both 
of the two students are boys, or, both are girls. For the former case, 
this is the same as selecting 2 elements from a 4-element set. Thus, as 
shown in the preceding discussion, there are 6 ways. For the latter case, 
assume the 3 girls are g\, g% and #3. Then there are 3 ways to form such 
a pair; namely, 

{91,92}, {§1,9z}, {52,53} • 

Thus, the desired number of ways is (6 + 3), which is 9. • 

1 
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In dealing with counting problems that are not so straightforward, 
we quite often have to divide our consideration into cases which are 
disjoint (like boys or girls in Example 1.1) and exhaustive (besides boys 
or girls, no other cases remain). Then the total number of ways would 
be the sum of the numbers of ways from each case. More precisely, we 
have: 

The Addition Principle 
Suppose that there are n\ ways for the event E\ to occur 
and n2 ways for the event E2 to occur. If all these ways are 
distinct, then the number of ways for E\ or E2 to occur is 
ni + n2. 

(1.1) 

For a finite set A, the size of A or the cardinality of A, denoted by |^4|, 
is the number of elements in A. For instance, if A — {u,v,w,x,y,z}, 
then \A\ = 6; if A is the set of all the letters in the English alphabet, 
then \A\ — 26; if 4> denotes the empty (or null) set, then \4>\ = 0. 

Using the language of sets, the Addition Principle simply states the 
following. 

If A and B are finite sets with AD B = <p, 
then | A U B | = |A| + |B|. 

(1.2) 

Two sets A and B are disjoint if A n B — <fi. Clearly, the above 
result can be extended in a natural way to any finite number of pairwise 
disjoint finite sets as given below. 

(AP) If A1,A2,..., An,n > 2, are finite sets which are 
pairwise disjoint, i.e. Ai C\ Aj = (f> for all i, j with 1 < i < 
j <n, then 

|;4i U A2 U • • • U An\ = \AX\ + \A2\ + • • • + \An\, 

or, in a more concise form: 

= £14 
i = l 

(1.3) 
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Example 1.2 From town X to town Y, one can travel by air, land or 
sea. There are 3 different ways by air, A different ways by land and 2 
different ways by sea as shown in Figure 1.1. 

air 

Figure 1.1 

How many ways are there from X to Y? 

Let A\ be the set of ways by air, A2 the set of ways by land and A3 
the set of ways by sea from XtoY. We are given that 

|Ai| = 3, |A2| = 4 and |A3| = 2. 

Note that AiDA2 = AinA3 = A2(~)A3 = <j> and AiLiA2UA3 is the set of 
ways from X to Y. Thus, the required number of ways is IA1U.A2UVI3I, 
which, by (AP), is equal to 

|i4i| + |Ai| + |i4i| = 3 + 4 + 2 = 9. • 

Example 1.3 Find the number of squares contained in the Ax A array 
(where each cell is a square) of Figure 1.2. 

Figure 1.2 
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Solution The squares in the array can be divided into the following 
4 sets: 

A\: the set of 1 x 1 squares, 
Aim. the set of 2 x 2 squares, 
A3: the set of 3 x 3 squares, and 
A±: the set of 4 x 4 squares. 

There are sixteen "1 x 1 squares". Thus \A\\ = 16. There are nine "2 x 2 
squares". Thus IA2I = 9. Likewise, |A3| = 4 and |A4| = 1. 

Clearly, the sets A\, A2, A3, A4 are pairwise disjoint and A\ U A% U 
A3 U A4 is the set of the squares contained in the array of Figure 1.2. 
Thus, by (AP), the desired number of squares is given by 

U t i ^ = E t i \M = 16 + 9 + 4 + 1 = 30. • 

Example 1.4 Find the number of routes from X toY in the one-way 
system shown in Figure 1.3. 

Figure 1.3 

Solution Of course, one can count the number of such routes by 
simply listing all of them: I 4 4 -} fl -> 7, X -+ A -> E ->• 
y, . . . , x -> c -> G -4 y. 
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Let us, however, see how to apply (AP) to introduce a more general 
method. 

Call a route from X to Y an X—Y route. It is obvious that just 
before reaching Y along any X—Y route, one has to reach D, E, F or G. 
Thus, by (AP), the number of X—Y routes is the sum of the numbers 
of X—D routes, X—E routes, X—F routes and X—G routes. 

How many X—D routes are there? Just before reaching D along any 
X—D route, one has to reach either A or B, and thus, by (AP), the 
number of X—D routes is the sum of the numbers of X—A routes and 
X—B routes. The same argument applies to others (X—E routes,...) 
as well. 

G(2) 

It is clear that the number of X—A routes (X—B routes and X—C 
routes) is 1. With these initial values, one can compute the numbers of 
X—D routes, X—E routes, etc., using (AP) as explained above. These 
are shown in brackets at the respective vertices in Figure 1.4. Thus, we 
see that the total number of possible X—Y routes is 2 + 3 + 3 + 2, 
i.e. 10. • 
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Exercise 

1.1 We can use 6 pieces of 
example, as shown below: 

to cover a 6 x 3 rectangle, for 

In how many different ways can the 6 x 3 rectangle be so covered? 

1.2 Do the same problem as in Example 1.3 for 1 x 1, 2 x 2, 3 x 3 and 
5 x 5 square arrays. Observe the pattern of your results. Find, in 
general, the number of squares contained in an n x n square array, 
where n > 2. 

1.3 How many squares are there in 

(i) the following 4 x 3 array (where each cell is a square)? 

(ii) an n x 3 array (where each cell is a square), with n > 5? 

1.4 How many squares are there in the following array (where each 
cell is a square)? 

1.5 Find the number of triangles in the following figure. 

1.6 Find the number of triangles in the following figure. 
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1.7 How many squares are there in the following configuration (where 
each cell is a square with diagonals)? 

1.8 Following the arrows given in the diagram, how many different 
routes are there from N to S? 

1.9 Following the arrows given in the diagram, how many different 
routes are there from N to 5? 

/iX / X îX 
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Chapter 2 

The Multiplication Principle 

Mr. Tan is now in town X and ready to leave for town Z by car. But 
before he can reach town Z, he has to pass through town Y. There are 
4 roads (labeled 1, 2, 3, 4) linking X and Y, and 3 roads (labeled as a, 
b, c) linking Y and Z as shown in Figure 2.1. How many ways are there 
for him to drive from X to Zl 

Figure 2.1 

Mr. Tan may choose road "1" to leave X for Y, and then select "a" 
from Y to Z. For simplicity, we denote such a sequence by (I, a). Thus, 
by listing all possible sequences as shown below: 

( l , a ) , ( l ,6 ) , ( l , c ) , 

(2, a), (2,6), (2, c), 

(3,a),(3,6),(3,c), 

(4, a), (4, b), (4, c), 

9 
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we get the answer ( 4 x 3 =)12. 
Very often, to accomplish a task, one may have to split it into ordered 

stages and then complete the stages step by step. In the above example, 
to leave X and reach Z, Mr. Tan has to split his journey into 2 stages: 
first from X to Y, and then Y to Z. There are 4 roads to choose from 
in Step 1: To each of these 4 choices, there are 3 choices in Step 2. Note 
that the number of choices in Step 2 is independent of the number of 
choices in Step 1. Thus, the number of ways from X to Z is given by 
4 x 3 (= 12). This illustrates the meaning of the following principle. 

The Multiplication Principle 
Suppose that an event E can be split into two events E\ 
and Ei in ordered stages. If there are n\ ways for E\ to 
occur and n<i ways for Ei to occur, then the number of 
ways for the event E to occur is n\U2. 

(2.1) 

Example 2.1 How many ways are there to select 2 students of dif­
ferent sex from a group of 4 boys and 3 girls? 

E2 

E: forming a pair consisting of a boy and a girl; 
E\\ selecting a boy; 
E-i. selecting a girl. 

Figure 2.2 
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Solution The situation when the 2 students chosen are of the same 
sex was discussed in Example 1.1. We now consider the case where the 2 
students chosen are of different sex. To choose 2 such students, we may 
first choose a boy and then select a girl. There are 4 ways for step 1 
and 3 ways for step 2 (see Figure 2.2). Thus, by the Multiplication 
Principle, the answer is 4 x 3 (= 12). D 

The Addition Principle can be expressed using set language. The 
Multiplication Principle can likewise be so expressed. For the former, 
we make use of the union AU B of sets A and B. For the latter, we shall 
introduce the cartesian product Ax B of sets A and B. Thus given two 
sets A and B, let 

AxB = {(x,y) :xeA, yeB}; 

namely, Ax B consists of all ordered pairs (x,y), where the first coordi­
nate, "x", is any member in the first set A, and the second coordinate, 
"y", is any member in the second set B. For instance, if A = {1,2,3,4} 
and B = {a, b, c}, then 

A x B = {(1, a), (1,6), (1, c), (2, a), (2,6), (2, c), (3, a), (3,6), 

(3, c), (4, a), (4, b), (4, c)} . 

Assume that A and B are finite sets. How many members (i.e. or­
dered pairs) are there in the set A x B? In forming ordered pairs in 
A x B, a member, say "x" in A is paired up with every member in 
B. Thus there are \B\ ordered pairs having "x" as the first coordinate. 
Since there are \A\ members in A, altogether we have \A\ \B\ ordered 
pairs in Ax B. That is, 

\AxB\ = \A\\B\ (2.2) 

Principle (2.1) and result (2.2) are two different forms of the same 
fact. Indeed, an event E which is split into two events in ordered stages 
can be regarded as an ordered pair (a, b), where "a" stands for the first 
event and "6" the second; and vice versa. 

Likewise, Principle (2.1) can be extended in a very natural way as 
follows: 
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(MP) Suppose that an event E can be split into k events 
Ei, E2,..., Ejc in ordered stages. If there are n\ ways for 
E\ to occur, n,2 ways for E2 to occur, . . . , and n^ ways for 
Ek to occur, then the number of ways for the event E to 
occur is given by n\n2 • • • n\.. 

(2.3) 

By extending the cartesian product A x B of two sets to A\ x 
A2 x • • • x vlfc of k sets, we shall also derive an identity which extends 
(2.2) and expresses (2.3) using set language. 

Let Ai,A2, • •., Ak be k finite sets, and let 

Ai x A2 x • • • x Ak 

= {(xi, X2, •. •, Xk) : xi G Ai for each i — 1, 2, , * } • 

Then 

(MP) |AX x ^.2 x • • • x Afc| = 1̂ 4x1 |A2 | - - - |Afc| (2.4) 

Example 2.2 There are four 2-digit binary sequences: 00,01,10,11. 
There are eight 3-digit binary sequences: 000,001,010,011,100,101, 
110, 111. How many 6-digit binary sequences can we form? 

Solution The event of forming a 6-digit binary sequence can be split 
into 6 ordered stages as shown in Figure 2.3. 

0 

_i S 

1st 

0 

<^_j__^y 
2nd 

0 

l ^ 1 ^> 

3rd 

0 

L^__l_^> 

4th 

0 

<^_J___^J 
5th 

0 

< \_ 

6th 

Figure 2.3 

Thus, by (2.3), the desired number of sequences is 2 x 2 x 2 x 2 x 2 x 2 = 26. 

Using set language, the same problem can be treated as follows. We 
have 

A1=A2 = --- = A6 = {0,1}, 
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The members in A\ x Ai x • • • x AQ can be identified with 6-digit 
binary sequences in the following way: 

(1,1,0,1,0,1) o 110101, 

(0,1,1,0,1,1) ++011011, 

etc. 

Thus, the number of 6-digit binary sequences is given by 
\Ai x A2 x • • • x Ae\, which, by (2.4), is equal to 

\Ai\ \A2\ • • • \Ae\ = 2 x 2 x 2 x 2 x 2 x 2 = 2 6 . • 

Prom now on, (MP) shall refer to Principle (2.3) or the identity (2.4). 

Example 2.3 Figure 2.4 shows 9 fixed points a,b,c,... , i which are 
located on the sides ofAABC. If we select one such point from each side 
and join the selected points to form a triangle, how many such triangles 
can be formed? 

Solution To form such a triangle, we first select a point on AB, 
then a point on BC and finally a point on CA. There are 3 ways 
in step 1 (one of a,b,c), 4 ways in step 2 (one of d,e,f,g) and 2 ways 
in step 3 (either h or i). Thus by (MP), there are 3 x 4 x 2 (= 24) such 
triangles. • 

We have seen in both the preceding and the current chapters some 
problems that can be solved by applying (AP) or (MP) individually. 
Indeed, more often than not, problems that we encounter are more 
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complex and these require that we apply the principles together. The 
following is an example. 

Example 2.4 (Continuation of Example 2.3) Find the number of 
triangles that can be formed using the 9 fixed points of Figure 2.4 as 
vertices. 

Solution This problem is clearly more complex than that of Exam­
ple 2.3 as there are other triangles whose three vertices are not neces­
sarily chosen from three different sides; but then, where else can they 
be chosen from? The answer is: two from one side and one from the 
remaining two sides. In view of this, we shall now classify the required 
triangles into the following two types. 

Type 1 — Triangles whose three vertices are chosen from three different 
sides. 

As shown in Example 2.3, there are 3 x 4 x 2 (= 24) such 
triangles. 

Type 2 — Triangles having two vertices from one side and one from the 
other two sides. 

We further split our consideration into three subcases. 

(i) Two vertices from AB and one from BC or CA. 

There are 3 ways to choose two from AB (namely, 
{a,b},{a,c} or {b, c}) and 6 ways to choose one from 
the other sides (namely, d,e,f,g,h,i). Thus, by (MP), 
there are 3 x 6 (= 18) such triangles, 

(ii) Two vertices from BC and one from CA or AB. 

There are 6 ways to choose two from BC (why?) and 
5 ways to choose one from the other sides (why?). Thus, 
by (MP), there are 6 x 5 (= 30) such triangles, 

(iii) Two vertices from CA and one from AB or BC. 

There is only one way to choose two from CA and there 
are 7 ways to choose one from the other sides. Thus, by 
(MP), there are 1 x 7 (= 7) such triangles. 

Summing up the above discussion, we conclude that by (AP), there are 
18 + 30 + 7 (= 55) triangles of Type 2. 
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As there are 24 triangles of Type 1 and 55 triangles of Type 2, the 
required number of triangles is thus, by (AP), 24 + 55 (= 79). • 

Exercise 

2.1 Following the arrows given in the diagram, how many different 
routes are there from W to E? 

W y 
2.2 In the following figure, ABCD and FEC are two perpendicular 

lines. 

F 

E 

B D 

(i) Find the number of right-angled triangles AXCY that can be 
formed with X, Y taken from A, B, D, E, F. 

(ii) Find the number of triangles that can be formed with any 
three points A,B,C,D,E,F as vertices. 

2.3 There are 2 distinct terms in the expansion of a(p + q): 

a(P + q) = ap + aq. 

There are 4 distinct terms in the expansion of (a + b)(p + q): 

(a + b)(p + q) = ap + aq + bp + bq . 



Counting 

How many distinct terms are there in each of the expansions of 

(i) (a + b + c + d)(p + q + r + s + t), 

(ii) (xi + x2 H + xm)(2/i + 7/2 H 1- J/n), and 
(iii) (xi + x2 + --- + xm)(yi + y2-\ + yn){zi + z2-\ h zt)? 

In how many different ways can the following configuration be 
covered by nine 2 x 1 rectangles? 

A ternary sequence is a sequence formed by 0, 1 and 2. Let n be 
a positive integer. Find the number of n-digit ternary sequences 

(i) with no restrictions; 
(ii) which contain no "0"; 

(iii) which contain at most one "0"; 
(iv) which contain at most one "0" and at most one " 1 " . 

6 The 
following diagram shows 12 distinct points: 01,02,03,61, 
c i , . . . , C5 chosen from the sides of AABC. 

(i) How many line segments are there joining any two points, 
each point being from a different side of the triangle? 

(ii) How many triangles can be formed from these points? 
(iii) How many quadrilaterals can be formed from these points? 
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Subsets and Arrangements 

There are 25 students in the class. How many ways are there to choose 
5 of them to form a committee? If among the chosen five, one is to be 
the chairperson, one the secretary and one the treasurer, in how many 
ways can this be arranged? In this chapter, our attention will be focused 
on the counting problems of the above types. We shall see how (MP) 
is used to solve such problems, and how (MP), by incorporating (AP), 
enables us to solve more complicated problems. 

From now on, for each natural number n, we shall denote by Nn the 
set of natural numbers from 1 to n inclusive, i.e., 

Nn = { l , 2 , 3 , . . . , n } . 

Consider the 4-element set N4 = {1,2,3,4}. How many subsets of N4 
are there? This question can be answered readily by listing all the 
subsets of N4. Table 3.1 lists all the subsets according to the number 

Table 3.1 

Number of 
elements 

0 
1 
2 
3 
4 

Subsets of N4 

<t> 
{1}, {2}, {3}, {4} 
{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4} 
{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4} 
{1, 2, 3, 4} 

Number of 
subsets of N4 

1 
4 
6 
4 
1 

17 
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of elements they possess: It is now easy to count the total number of 
subsets of N4(= 16). 

We note that the 5 numbers, namely, 1, 4, 6, 4, 1 (whose sum is 
16) shown in the right hand column of Table 3.1 are the corresponding 
numbers of r-element subsets of N4, where r = 0,1,2,3,4. These num­
bers are very interesting, useful and important in mathematics, and 
mathematicians have introduced special symbols to denote them. 

In general, given two integers n and r with 0 < r < n, we denote 
by ("), the number of r-element subsets of N„. Thus, Table 3.1 tells 
us that 

(!)-• C)-<- (J)-- (!)-• O -
The symbol (") is read "n choose r". Some other symbols for this 
quantity include C™ and nCr. 

Now, what is the value of (2)? Since (2) counts, by definition, the 
number of 2-element subsets of N5, we may list all these subsets as 
shown below: 

{1,2},{1,3},{1,4},{1,5},{2,3},{2,4},{2,5},{3,4},{3,5},{4,5} , 

and see that there are 10 in total. Thus, we have (2) = 10. 
You may ask: How about ( 6 )? We are sure that we are too busy 

to have time to compute ( 6 ) by listing all the 6-element subsets of 
Nioo- Thus, a natural question arises: Is there a more efficient way to 
compute (10

6
0)? The answer is "Yes", and we are going to show you. 

Let us first consider a different but related problem. How many 
ways are there to arrange any three elements of N4 = {1,2,3,4} in a 
row? With a little patience, we can list all the required arrangements 
as shown in Table 3.2. 

Table 3.2 

123 
124 
134 
234 

132 
142 
143 
243 

213 
214 
314 
324 

231 
241 
341 
342 

312 
412 
413 
423 

321 
421 
431 
432 
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Thus, there are 24 ways to do so. The answer is "correct" but the 
method is "naive". Is there a cleverer way to get the answer? 

Imagine that we wish to choose 3 numbers from N4 and put them 
one by one into 3 spaces as shown. 

1st 2nd 3rd 

This event can be thought of as a sequence of events: We first select 
a number from N4 and place it in the 1st space; we then select another 
number and place it in the 2nd space; finally, we select another number 
and place it in the 3rd space. There are 4 choices for the first step, 3 
choices (why?) for the second and 2 choices (why?) for the last. Thus, 
by (MP), there are 4 - 3 - 2 (= 24) ways to do so. The answer agrees 
with what we obtained above. Isn't this method better? 

This method is better not only in shortening our solution, but also 
in giving us an idea on how to generalize the above result. 

In the above example, we considered the number of ways of arranging 
3 elements of N4 in a row. We now ask a general question: Given integers 
r, n with 0 < r < n, how many ways are there to arrange any r elements 
of Nn in a row? 

Consider the r spaces shown in Figure 3.1. 

n 
choices 

1st 

(T 1 

n-\ n—2 
choices choices 

2nd 3rd 

, 2, 3, ...,n 1 

. . . 

n-(r-2) 
choices 

(r-l)th 

n-0-l) 
choices 

rth 

Figure 3.1 
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We wish to choose r elements from {1, 2 , . . . ,n} to fill the r spaces, 
where the ordering of elements matters. There are n choices for the 
1st space. After fixing one in the 1st space, there are n — 1 choices 
remaining for the 2nd space. After fixing one in the 2nd space, there 
are n — 2 choices left for the 3rd space, and so on. After fixing one in 
the (r — l)th space, there are n — (r — 1) choices left for the r th space. 
Thus, by (MP), the number of ways to arrange any r elements from Nn 

in a row is given by 

n(n - l)(n - 2 ) . . . (n - r + 1). 

For convenience, let us call an arrangement of any r elements from Nn 

in a row, an r-permutation of Nn , and denote by P™ the number of 
r-permutations of Nn . Thus, we have 

Pr" = n(n - l)(n - 2 ) . . . (n - r + 1) (3.1) 

For instance, all the arrangements in Table 3.2 are 3-permutations of 
N4, and, by (3.1), the number of 3-permutations of N4 is given by 

P3
4 = 4 • 3 • 2 = 2 4 , 

which agrees with what we have counted in Table 3.2. 
The expression (3.1) for P™ looks a bit long. We shall make it more 

concise by introducing the following useful notation. Given a positive 
integer n, define n! to be the product of the n consecutive integers 
n, n — 1 , . . . , 3,2,1; that is, 

n! = n ( n - l ) ( n - 2 ) . . . 3 - 2 - l (3.2) 

Thus 4! = 4 • 3 • 2 • 1 = 24. The symbol "n!" is read "n factorial". By 
convention, we define 0! = 1. 

Using the "factorial" notation, we now have 

Pr
n = n(n - 1 ) . . . (n - r + 1) 

n{n — 1 ) . . . (n — r + l)(n — r)(n — r — 1 ) . . . 2 • 1 _ n\ 

(n — r)(n — r — 1 ) . . . 2 • 1 (n — r)\ ' 
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That is, 

(3.3) 

When n = 4 and r = 3, we obtain 

4! 4! 4 • 3 • 2 • 1 
P 4 -
r3 — (4 - 3)! 1! 1 

= 4 • 3 • 2 = 24, 

which agrees with what we found before. 
The expression (3.3) is valid when 0 < r < n. Consider two extreme 

cases: when r = 0 and r = n respectively. When r = 0, by (3.3), 

n! 
= ^ = 1 pn __ 

0 (n - 0)! n\ 

(How can this be explained?) When r = n, an n-permutation of Nn is 
simply called a permutation of N„. Thus, by (3.3) and that 0! = 1, the 
number of permutations of Nn is given by 

n! 
" {n-n)\ 0! 

i.e., 

Pn
n = «!- (3.4) 

Thus, for example, P | counts the number of permutations of N5, and 
we have, by (3.4), P* = 5 • 4 • 3 • 2 • 1 = 120. 

Let us now return to the problem of evaluating the quantity ("). 
We know from (3.3) that the number P™ of r-permutations of Nn is 

given by (n"i'r\, • We shall now count this number (namely the number 
of r-permutations of Nn) in a different way. 

To get an r-permutation of N„, we may proceed in the following 
manner: first select an r-element subset of Nn, and then arrange the 
chosen r elements in a row. The number of ways for the first step is, by 
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definition, ("), while that for the second step is, by (3.4), r\. Thus, by 
(MP), we have 

As 

we have 

and thus 

r?=[n
ri-« 

p n = rc! 
r (n - r)\ ' 

n \ n! 
• r ! = (n — r)\ ' 

(3.5) 

For instance, 

5\=_iL_ = 4L = 10, while ( ? ) = S = H92052400. 
1) 2 ! (5 -2 ) ! 2!3! V 6 / 6 ! 9 4 ! 

Note that when r = 0 or n, we have 

; - i - ; , . i . 

Again, by convention, we define 

= 1. 

By applying (3.5), one can show that the following identity holds (see 
Problem 3.1): 

(3.6) 

Thus, (™) = («>) = 45 and Q = ^f) = 1192052400. 
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We define P™ as the number of r-permutations and (") as the number 
of r-element subsets of Nn . Actually, in these definitions, Nn can be 
replaced by any n-element set since it is the number of the elements but 
not the nature of the elements in the set that matters. That is, given 
any n-element set S, P™ (respectively, (")) is defined as the number of 
r-permutations (respectively, r-element subsets) of S. Any r-element 
subset of S is also called an r-combination of S. 

We have introduced the notions of r-permutations (or permutations) 
and r-combinations (or combinations) of a set S. Always remember that 
these two notions are closely related but different. While a "combina­
tion" of S is just a subset of S (and thus the ordering of elements is 
immaterial), a "permutation" of S is an arrangement of certain elements 
of S (and thus the ordering of elements is important). 

Exercise 

3.1 Show that for nonnegative integers r and n, with r < n, 

(i) (?) = L-J; 
(ii) rft) = n(?:}), where r > l ; 

(hi) ( n - r ) e ) = n ( V 1 ) ; 

H r£) = (n-r + l ) ^ ) , where r > 1. 
3.2 Show that for 1 < r < n, 

(i) P?+1 = P? + rP?_1; 
(ii) P r

n + 1 = r! + r{P^ + P^1 + ••• + P;_x); 

(iii) (n - r)P? = riP?'1; 

(iv) Pr
n = ( n - r + l)P r

n_ i ; 

(v) Pr" = nP^i-

3.3 Prove that the product of any n consecutive integers is divisible 
by n!. 

3.4 Find the sum 

l - l ! + 2-2! + 3-3! + --- + n - n ! . 
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Chapter 4 

Applications 

Having introduced the concepts of r-permutations and r-combinations 
of an n-element set, and having derived the formulae for P? and (™), 
we shall now give some examples to illustrate how these can be applied. 

Example 4.1 There are 6 boys and 5 men waiting for their turn in a 
barber shop. Two particular boys are A and B, and one particular man 
is Z. There is a row of 11 seats for the customers. Find the number of 
ways of arranging them in each of the following cases: 

(i) there are no restrictions; 
(ii) A and B are adjacent; 

(iii) Z is at the centre, A at his left and B at his right (need not be 
adjacent); 

(iv) boys and men alternate. 

Solution (i) This is the number of permutations of the 11 persons. 
The answer is 11!. 
(ii) Treat {A, B} as a single entity. The number of ways to arrange the 
remaining 9 persons together with this entity is (9 + 1)!. But A and B 
can permute themselves in 2 ways. Thus the total desired number of 
ways is, by (MP), 2-10!. 

z 
25 
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As shown in the diagram above, A has 5 choices and B has 5 choices as 
well. The remaining 8 persons can be placed in 8! ways. By (MP), the 
total desired number of ways is 5 • 5 • 8!. 
(iv) The boys (indicated by b) and the men (indicated by m) must be 
arranged as shown below. 

b m b m b m b m b m b 

The boys can be placed in 6! ways and the men can be placed in 5! 
ways. By (MP), the desired number of ways is 6!5!. D 

Example 4.2 In each of the following cases, find the number of inte­
gers between 3000 and 6000 in which no digit is repeated: 

(i) there are no additional restrictions; 
(ii) the integers are even. 

Solution Let abed be a required integer. 

(i) As shown in the diagram below, a has 3 choices (i.e. 3, 4, or 5), say 
a = 3. 

{3,4,5} 

Since no digit is repeated, a way of forming "feed" corresponds to 
a 3-permutation from the 9-element set {0,1,2,4,5, . . . , 9}. Thus the 
required number of integers is 3 • P$. 
(ii) Again, a = 3, 4 or 5. We divide the problem into two cases. 

Case (1) a = 4 (even) 

A b e d 

In this case, d has 4 choices (i.e. 0, 2, 6, 8), say d = 2. Then 
a way of forming "fee" is a 2-permutation from the 8-element set 
{0,1,3,5,6,7,8,9}. Thus the required number of integers is 4 • P%. 

Case (2) a = 3 or 5 (odd) 
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In this case, d has 5 choices, and the number of ways to form "fee" is 
Pf. The required number of integers is 2 • 5 • Pf. 
By (AP), the desired number of integers is 

4 • P2
8 + 2 • 5 • Pf = 14 • P2

8. D 

Example 4.3 There are 10 pupils in a class. 

(i) ffou; many ways are there to form a 5-member committee for the 
class? 

(ii) How many ways are there to form a 5-member committee in which 
one is the Chairperson, one is the Vice-Chairperson, one is the 
Secretary and one is the Treasurer? 

(iii) How many ways are there to form a 5-member committee in 
which one is the Chairperson, one is the Secretary and one is the 
Treasurer? 

Solution (i) This is the same as finding the number of 5-combinations 
of a 10-element set. Thus the answer is ( 5 ) = 252. 
(ii) This is the same as choosing 5 pupils from the class and then placing 
them in the following spaces. 

Chairperson V-Chairperson | Secretary Treasurer Member 

Clearly, this is a "permutation" problem, and the answer is Pg° = ^ = 
7620480. 
(iii) This problem can be counted in the following procedure: we first 
select one for Chairperson, then one for Secretary, then one for Trea­
surer, and finally two from the remainder for committee members as 
shown below: 

Chairperson Secretary Treasurer 2 Members 

(10 choices) (9 choices) (8 choices) 
(choose 2 from the 

remaining 7) 

Figure 4.1 



28 Counting 

Thus, by (MP), the answer is given by 10 • 9 • 8 • Q = 1814400. • 

Note There are different ways to solve (iii). You may want to try 
your own ways. 

Example 4.4 As shown in Example 2.2, the number of 6-digit 
binary sequences is 26. How many of them contain exactly two 0's 
(e.g. 001111,101101,...)? 

Solution Forming a 6-digit binary sequence with two 0's is the same 
as choosing two spaces from the following 6 spaces into which the two 
0's are put (the rest are then occupied by l's) as shown below: 

(1) (2) (3) (4) (5) (6) 

e.g. 0 0 

1 0 1 0 1 1 

Thus, the number of such binary sequences is (2) • d 

Example 4.5 Figure 4.2 shows 9 distinct points on the circumference 
of a circle. 

(i) How many chords of the circle formed by these points are there? 
(ii) / / no three chords are concurrent in the interior of the circle, how 

many points of intersection of these chords within the circle are 
there? 

Figure 4.2 
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Solution (i) Every chord joins two of the nine points, and every two 
of the nine points determine a unique chord. Thus, the required number 
of chords is (2). 

(ii) Every point of intersection of two chords corresponds to four of 
the nine points, and every four of the nine points determine a point 
of intersection. Thus the required number of points of intersection 

^ ffl- • 
Example 4.6 At a National Wages Council conference, there are 
19 participants from the government, the unions and the employers. 
Among them, 9 are from the unions. 

In how many ways can a 7'-member committee be formed from these 
participants in each of the following cases: 

(i) there are no restrictions? 
(ii) there is no unionist in the committee? 

(iii) the committee consists of unionists only? 
(iv) there is exactly one unionist in the committee? 
(v) there is at least one unionist in the committee? 

Solution (i) This is the number of 7-element subsets of a 19-element 
set. By definition, the desired number is ( 7 ) . 
(ii) This is the number of ways to form a 7-member committee from the 
10 non-unionists. Thus, the desired number is (1

7°). 
(iii) Obviously, the desired number is (7). 
(iv) We first select a member from the 9 unionists and then select the 
remaining 6 from the 10 non-unionists. By (MP), the desired number 

tafflff)=8ffl-
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(v) There are 7 cases to consider, namely, having r unionists, where 
r = 1,2,3,4,5,6,7. Thus, by (AP) and (MP), the desired number is 
given by 

TeKX^'+QG0)^)-
Indeed, we can have a shorter way to solve this part by using the idea 
of "complementation". 

By (i), there are (^) 7-member committees we can form from 
19 participants. Among them, there are (1

7°) such committees which 
contain no unionist by (ii). Thus, the number of 7-member committees 
which contain at least one unionist should be (1

7
9) — (x

7). (The reader 
may check that these two answers agree.) • 

The second solution given in (v) for the above example is just an 
instance of applying the following principle. 

Principle of Complementation (CP) 
Let A be a subset of a finite set B. 
Then \B\A\ = \B\-\A\, where B\A = {x : x € B but x £ A} 

(4.1) 

If you revisit Example 2.4, you may then observe that the problem 
can also be solved by (CP). There are (3) ways to form a 3-vertex subset 
from the given 9 vertices. Among them, the 3 on AB and any 3 on BC 
do not form a triangle. Thus, the number of triangles one can form is, 
by (CP), 

which is 79. 
We have seen from the above examples how, by applying (CP), we 

are able to considerably shorten the work needed to solve a counting 
problem. When a direct approach involves a large number of cases for 
which a certain condition holds, the complementary view of the smaller 
number of cases in which the condition does NOT hold allows a quicker 
solution to the problem. What follows then is that we count the number 
of ways afforded by the smaller number of "complementary" cases and 

file:///B/A/
file:///B/-/A/
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finally obtain the required answer by subtracting this from the total 
number of ways. 

Exercise 

4.1 (Continuation from Example 4.1) 

(v) A and B are at the two ends; 
(vi) Z is at the centre and adjacent to A and B; 

(vii) A, B and Z form a single block (i.e. there is no other person 
between any two of them); 

(viii) all men form a single block; 
(ix) all men form a single block and all boys form a single block; 
(x) no two of A, B and Z are adjacent; 

(xi) all boys form a single block and Z is adjacent to A; 
(xii) Z is between A and B (need not be adjacent). 

4.2 (Continuation from Example 4.2) 

(iii) the integers are odd; 
(iv) the integers are divisible by 5; 
(v) the integers are greater than 3456. 

4.3 Four people can be paired off in three ways as shown below: 

(1) {{A,B},{C,D}}, 
(2) {{A,C},{B,D}}, 
(3) {{A,D},{B,C}}. 

In how many ways can 10 people be paired off? 
4.4 If n points on the circumference of a circle are joined by straight 

lines in all possible ways and no three of these lines meet at a 
single point inside the circle, find 

(i) the number of triangles formed with all vertices lying inside 
the circle; 

(ii) the number of triangles formed with exactly two vertices 
inside the circle; 

(iii) the number of triangles formed with exactly one vertex in­
side the circle; 

(iv) the total number of triangles formed. 
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4.5 Three girls and seven boys are to be lined up in a row. Find the 
number of ways this can be done if 

(i) there is no restriction; 
(ii) the girls must form a single block; 

(iii) no two girls are adjacent; 
(iv) each boy is adjacent to at most one girl. 

4.6 Eight students are in a sailing club. In how many ways can they 
form a team consisting of 4 Laser pairs, where the order of the 
pairs does not matter? (Note: A Laser is a sailing boat that 
takes a crew of two.) 

4.7 There are three boys and two girls. 

(i) Find the number of ways to arrange them in a row. 
(ii) Find the number of ways to arrange them in a row so that 

the two girls are next to each other, 
(iii) Find the number of ways to arrange them in a row so that 

there is at least one boy between the two girls. 

4.8 In how many ways can a committee of 5 be formed from a group 
of 11 people consisting of 4 teachers and 7 students if 

(i) the committee must include exactly 2 teachers? 
(ii) the committee must include at least 3 teachers? 

(iii) a particular teacher and a particular student cannot be both 
in the committee? 

4.9 A palindrome is a number that remains the same when it is read 
backward, for example, 2002 is a palindrome. Find the number 
of n-digit palindromes. 

4.10 A team of 6 people is to be chosen from a list of 10 candidates. 
Find in how many ways this can be done 

(i) if the order of the people in the team does not matter; 
(ii) if the team consists of 6 people in a definite order; 

(iii) if the team consists of a first pair, a second pair and a third 
pair but order within each pair does not matter. / r r . 

\SJ) 
4.11 Find how many three figure numbers, lying between 100 and 999 

inclusive, have two and only two consecutive figures identical. 
(C) 
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4.12 Find the number of ways in which 10 persons can be divided into 

(i) two groups consisting of 7 and 3 persons; 

(ii) three groups consisting of 4, 3 and 2 persons with 1 person 

rejected. ,„>. 
(M 

4.13 (i) Find the number of integers from 100 to 500 that do not 
contain the digit "0". 

(ii) Find the number of integers from 100 to 500 that contain 
exactly one "0" as a digit. 

4.14 Calculate the number of ways of selecting 2 points from 6 distinct 
points. Six distinct points are marked on each of two parallel 
lines. Calculate the number of 
(i) distinct quadrilaterals which may be formed using 4 of the 

12 points as vertices; 
(ii) distinct triangles which may be formed using 3 of the 

12 points as vertices. ,„,. 

4.15 (a) A tennis team of 4 men and 4 women is to be picked from 
6 men and 7 women. Find the number of ways in which this 
can be done, 

(b) It was decided that 2 of the 7 women must either be se­
lected together or not selected at all. Find how many pos­
sible teams could be selected in these circumstances. The 
selected team is arranged into 4 pairs, each consisting of a 
man and a woman. Find the number of ways in which this 
can be done. ,n-. 
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Chapter 5 

The Bijection Principle 

We have introduced three basic principles for counting, namely, the 
(AP), the (MP) and the (CP). In this chapter, we shall introduce an­
other basic principle for counting which we call the Bijection Principle, 
and discuss some of its applications. 

A A A A .Qt 
J?k y*Tk jyy J5L25L 

Figure 5.1 

Suppose that there are 200 parking lots in a multi-storey carpark. 
The carpark is full with each vehicle occupying a lot and each lot being 
occupied by a vehicle (see Figure 5.1). Then we know that the number 
of vehicles in the carpark is 200 without having to count the vehicles 
one by one. The number of vehicles and the number of lots are the same 
because there is a one to one correspondence between the set of vehicles 
and the set of lots in the carpark. This is a simple illustration of the 
Bijection Principle that we will soon state. 

Let us first recall some concepts on mappings of sets. Suppose A and 
B are two given sets. A mapping f from A to B, denoted by 

f:A^B, 

35 
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is a rule which assigns to each element a in A a unique element, denoted 
by f(a), in B. Four examples of mappings are shown pictorially in 
Figure 5.2. 

Certain kinds of mappings are important. Let / : A —> B be a 
mapping. We say that / is injective (or one to one) if f(x) 7̂  f(y) in B 
whenever x / y in A. Thus, in Figure 5.2, /2 and / 4 are injective, while 

(i) Ai 

(ii) A2 

(iii) A3 

(iv) A4 

Bi 

B2 

B3 

B4 

Figure 5.2 
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fx and /3 are not (why?). We say that / is surjective (or onto) if for any 
b in B, there exists an a in A such that / (a) = b. Thus, in Figure 5.2, 
/3 and /4 are surjective whereas / i and /2 are not (why?). We call / a 
bijection from A to £? if / is both injective and surjective. (Sometimes, 
a bijection from A to 5 is referred to as a one-to-one correspondence 
between A and J5.) Thus, in Figure 5.2, f\ is the only bijection. These 
observations on the four mappings are summarized in Table 5.1. 

h 
h 
h 
U 

Table 5.1 

Injection 

X 

/ 
X 

/ 

Surjection 

X 

X 

/ 
/ 

Bijection 

X 

X 

X 

/ 

Let A and B be two finite sets. Suppose there is a mapping / : A —> 
B that is injective. Then, by definition, each element a in A corresponds 
to its image f(a) in B, and distinct elements in A correspond to distinct 
images in B. Thus, we have: 

The Injection Principle (IP) 
Let A and B be finite sets. If there exists a one-to-one 
mapping f : A-t B, then 

\A\ < \B\. 

(5.1) 

Suppose further, that the one-to-one mapping / : A —t B is onto. 
Then each element b in B has a unique preimage a in A such that 
/ (a ) = b. In this case, we clearly have: 

The Bijection Principle (BP) 
Let A and B be finite sets. If there exists a bijection 
/ : A -> B, then 

\A\ = \B\. 

(5.2) 
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In this chapter, we shall focus on (BP). Through the discussions on 
a number of problems, we shall show you how powerful this principle is. 

First of all, let us revisit a problem we studied in Chapter 4. In Ex­
ample 4.5, we counted the number of chords and the number of points 
of intersection of the chords joining some fixed points on the circumfer­
ence of a circle. Let us consider a similar problem. Figure 5.3 shows 
five distinct points on the circumference of a circle. 

How many chords can be formed by these points? 
Let A be the set of such chords, and B, the set of 2-element subsets 

of {1,2,3,4,5}. Given a chord a in A, define f(a) = {p, q}, where p, q 
are the two points (on the circumference) which determine the chord a 
(see Figure 5.4). Then / is a mapping from A to B. Clearly, if a and 
j3 are two distinct chords in A, then f(a) ^ /(/?)• Thus, / is injective. 
On the other hand, for any 2-element subset {p, q} in B (say, p = 2 and 

Figure 5.3 

• U , 5 } 
5 

> {2,4} 

3 

Figure 5.4 
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q = 5), there is a chord a in A (in this instance, a is the chord joining 
points 2 and 5) such that f(a) = {p,q}. Thus, / is onto. 

Hence, / : A ->• B is a bijection and, by (BP), we have \A\ = \B\. 
As 5 is the set of all 2-element subsets of {1,2,3,4,5}, \B\ = g ) . We 
thus conclude that \A\ = | 5 | = (jj). 

Next we ask: How many points of intersection (of these (j) chords) 
that lie in the interior of the circle are there if no three chords are 
concurrent in the interior of the circle? 

Let A be the set of such points of intersection and B, the set 
of 4-element subsets of {1,2,3,4,5}. Figure 5.5 exhibits a bijection 
between A and B (figure out the rule which defines the bijection!). 
Thus, by (BP), |A| = \B\. Since \B\ = (%) by definition, we have 

a-
b-
c-
d-
e-

->{1,2,3,5) 
- > U , 2 , 4 , 5 } 
->{1,3,4,5} 
->{2,3,4,5} 
->{1,2,3,4} 

Figure 5.5 

Let us proceed to show some more applications of (BP). 

Example 5.1 Figure 5.6 shows a 2 x 4 rectangular grid with two 
specified corners P and Q. There are 12 horizontal segments and 10 
vertical segments in the grid. A shortest P—Q route is a continuous 
path from P to Q consisting of 4 horizontal segments and 2 vertical 

PO 

1 . r 
— • — ^ T 

Figure 5.6 



40 Counting 

segments. An example is shown in Figure 5.6. 
P—Q routes in the grid are there? 

How many shortest 

Solution Certainly, we can solve the problem directly by listing all 
the possible shortest routes. This, however, would not be practical if 
we wish to solve the same problem in, say, a 190 x 100 rectangular grid. 
We look for a more efficient way. 

There are two types of segments: horizontal and vertical. Let us 
use a "0" to represent a horizontal segment, and a "1" to represent a 
vertical segment. Thus, the shortest P—Q route shown in Figure 5.6 
can accordingly be represented by the binary sequence with four "0"s 
and two "l"s as shown below: 

P • -
- > 0 1 0 1 0 0 

Likewise, we can have: 

_ J 
- > 0 0 0 1 0 1 

and so on. 
Now, let A be the set of all shortest P—Q routes and B, the set of 

all 6-digit binary sequences with two l's. Then we see that the above 
way of representing a shortest P—Q route in A by a binary sequence 
in B defines a mapping / : A -> B. Clearly, different shortest P—Q 
routes in A correspond to different sequences in B under / . Thus, / is 
one-to-one. Further, for any sequence b in B, say, b = 100010, one can 
find a shortest P—Q route, a in A, in this case, 

r 
-%Q 
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so that f(a) = b. Thus / is onto, and so it is a bijection. Now, by (BP), 
we conclude that \A\ = \B\. But how does this simplify our effort to 
find the number of shortest P—Q routes? 

Let us explain. What is the set Bl B is the set of all 6-digit binary 
sequences with two l's. Can we count \B\1 Oh, yes! We have already 
solved it in Example 4.4. The answer is | S | = (2). Accordingly, we have 
\A\ = \B\ = ®. D 

Example 5.2 The power set of a set S, denoted by V(S), is the set 
of all subsets of S, inclusive of S and the empty set (j). Thus, for Nn = 
{1,2 , . . . ,n}, 1 < n < 3, we have 

V(N1) = {<P,{1}}, 

P(N2) = {«/>,{!}, {2}, {1,2}}, 

V(N3) = {<j>, {1}, {2}, {3}, {1, 2}, {1,3}, {2,3}, {1, 2,3}} . 

Note that \V{Ni)\ = 2, |7 ,(N2)| = 4, |7>(N3)| = 8. Table 3.1 shows that 
|P(N4)| = 16. What is the value of |P(N5)|? 

Solution For convenience, let A = 73(N5); that is, A is the power set 
of {1,2,3,4,5}. Represent these subsets by 5-digit binary sequences as 
follows: 

4> • o o o o o 
{1} • 10000 

{2} • 01000 

{5} >• 00001 

{1,2} • 11000 

{4,5} •00011 

{1,3,5} • 10101 

{1,2,3,4,5} > 11111 
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The rule is that the ith digit of the corresponding binary sequence is 
"1" if "i" is in the subset; and "0" otherwise. Let B be the set of all 
5-digit binary sequences. Clearly, the above rule establishes a bijection 
between A and B. Thus, by (BP), |A| = |B| . Since |B | = 25 (see 
Example 2.2), \A\ = 25. D 

Note that |P(Ni)| = 2 = 2!, |P(N2) | = 4 = 22, |P(N3) | = 8 = 23, 
|7>(N4)| = 16 = 24, and now |P(N5) | = 25. What is |P(N„)| for n > 1? 
(See Exercise 5.3.) 

Finally, let us introduce a counting problem related to the notion of 
divisors of natural numbers. We shall denote by N, the set of natural 
numbers; i.e. 

N = {1 ,2 ,3 , . . . } . 

Assume that d,n € N. We say that d is a divisor of n if when n is 
divided by d, the remainder is zero. Thus, 3 is a divisor of 12, 5 is a 
divisor of 100, but 2 is not a divisor of 9. 

Let n € N, n > 2. Clearly, n has at least two divisors, namely 1 and 
n. How many divisors (inclusive of 1 and n) does n have? This is a 
type of problem that can often be found in mathematical competitions. 
We shall tackle this problem and see how (MP) and (BP) are used in 
solving the problem. 

To understand the solution, we first recall a special type of numbers 
called prime numbers and state an important result relating natural 
numbers and prime numbers. 

A natural number p is said to be prime (or called a prime) if p > 2 
and the only divisors of p are 1 and p. All prime numbers less than 100 
are shown below: 

2,3,5,7,11,13,17,19,23,29,31,37,41, 

43,47,53,59,61,67,71,73,79,83,89,97. 

The primes are often referred to as building blocks of numbers 
because every natural number can always be expressed uniquely as a 
product of some primes. For example, 

108 = 22 x 33 , 1620 = 22 x 34 x 5 , 

1815 = 3 x 5 x l l 2 , 215306 = 2 x 72 x 133 . 
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This fact is so basic and important to the study of numbers that it is 
called the Fundamental Theorem of Arithmetic (FTA). 

(FTA) Every natural number n > 2 can be factorized as 

n = p?W •Pkk 

for some distinct primes pi,P2, • • • ,Pk a n d for some natural numbers 
mi , m,2,..., mk. Such a factorization is unique if the order of primes 
is disregarded. 

FTA was first studied by the Greek mathematician, Euclid (c. 450-
380 BC) in the case where the number of primes is at most 4. It was 
the German mathematician, Carl Friedrich Gauss (1777-1855), known 
as the Prince of Mathematicians, who stated and proved the full result 
in 1801. 

Let us now return to the problem of counting the number of divisors 
of n. How many divisors does the number 72 have? Since 72 is not a big 
number, we can get the answer simply by listing all the divisors of 72: 

1,2,3,4,6,8,9,12,18,24,36,72. 

The way of counting the divisors of n by listing as shown above is 
certainly impractical when n gets larger. We look for a more efficient 
way. 

Let us look at the example when n = 72 again and try to get some 
information about 72 and its divisors by FTA. 

!2&s% 

The images above are those of Euclid on a stamp of the Maldives and Gauss on a 
German banknote. 
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Observe that 72 = 23 x 32 . Suppose x is a divisor of 72. Clearly, x 
does not contain prime factors other than 2 and 3. That is, x must be 
of the form 

x = 2 p x 3 « 

where, clearly, p E {0,1,2,3} and q € {0,1, 2}. On the other hand, any 
such number 2P x 39 is a divisor of 72. Indeed, 

1 = 2° x 3° 

2 = 21 x 3° 

3 - 2° x 31 

4 = 22 x 3° 

6 = 21 x 31 

8 = 23 x 3° 

9 = 2° x 32 , 

12 = 22 x 31, 

18 = 21 x 32 , 

24 = 23 x 31, 

36 = 22 x 32 , 

72 = 23 x 32 . 

Let A be the set of divisors of 72 and B = {{p,q) : 0 < p < 3,0 < 
q < 2} = {0,1,2,3} x {0,1,2}. Then the above list implies that the 
mapping / defined by 

/(1) = 

/(2) = 

/(3) = 

/(4) = 

/(6) = 

/(8) = 

= (0,0), 

= (1,0), 

= (o,i), 

= (2,0), 

= (1,1), 

= (3,0), 

/(9) = 

/(12)= 

/(18) = 

/(24) = 

/(36) = 

/(72)= 

= (0,2) 

= (2,1) 

= (1,2) 

= (3,1) 

= (2,2) 

= (3,2) 

is a bijection from A to B. Thus, by (BP) and (MP), \A\ = \B\ = 
|{0,1,2,3} x {0,1,2}| = |{0,1,2,3}| x |{0,1,2}| = 4 x 3 = 12, which 
agrees with the above listing. 

The following example extends what we discussed above. 

Example 5.3 Find the number of divisors of 12600. 

Solution Observe that 12600 = 23 x 32 x 52 x 71. 
Thus a number z is a divisor of 12600 if and only if it is of the form 

z = 2° x 36 x 5C x 7d 
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where a,b,c,d are integers such that 0 < a < 3 , 0 < 6 < 2 , 0 < c < 2 
and 0 < d < 1. 

Let A be the set of divisors z of 12600 and B = {(a,b,c,d) : a — 
0,1,2,3; 6 = 0,1,2; c = 0,1,2; d = 0,1}. Clearly, the mapping / denned 
by 

f{z) = (a,b,c,d), 

is a bijection from A to B. Then, by (BP) and (MP), \A\ = | £ | = 
4 • 3 • 3 • 2 = 72. D 

We have seen from the above examples how crucial applying (BP) 
is as a step towards solving a counting problem. Given a finite set A, 
the objective is to enumerate \A\, but of course, this is not easy. In 
the course of applying (BP), we look for a more familiar finite set B 
and try to establish a bijection between these two sets. Once this is 
done, the harder problem of counting |J4| is transformed to an easier 
problem (hopefully) of counting \B\. It does not matter how different 
the members in A and those in B are in nature. As long as there exists 
a bijection between them, we get |vl| = |B|. 

Exercise 

5.1 (a) Find the number of positive divisors of n if 

(i) n = 31752; 
(ii) n = 55125. 

(b) In general, given an integer n > 2, how do you find the number 
of positive divisors of re? 

5.2 In each of the following cases, find the number of shortest P—Q 
routes in the grid below: 

Q 

\\ uB 
ft %t 

vc 
< 

« 

p 
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(i) the routes must pass through A; 
(ii) the routes must pass through AB; 

(iii) the routes must pass through A and C; 
(iv) the segment AB is deleted. 

5.3 For each positive integer n, show that ^ ( N ^ l = 2" by establishing 
a bijection between V(Nn) and the set of n-digit binary sequences. 

5.4 Let n and r be integers with 1 < r < n. Prove that (") = (n" r) 
by establishing a bijection between the set of r-element subsets of 
Nn and the set of (n — r)-element subsets of Nn . 

5.5 The number 4 can be expressed as a sum of one or more positive 
integers, taking order into account, in the following 8 ways: 

4=4=1+3 

=3+1=2+2 

=1+1+2=1+2+1 

= 2 + 1 + 1 = 1 + 1 + 1 + 1. 

Show that every natural number n can be so expressed in 2 n _ 1 

ways. 
5.6 How many rectangles are there in the following 6 x 7 grid? 

5.7 Find the number of parallelograms which are contained in the 
configuration below and which have no sides parallel to BC. (Hint: 
Adjoin a new row at the base of the triangle.) 



Chapter 6 

Distribution of Balls into Boxes 

Figure 6.1 shows three distinct boxes into which seven identical 
(indistinguishable) balls are to be distributed. Three different ways 
of distribution are shown in Figure 6.2. (Note that the two vertical bars 
at the two ends are removed.) 

(i) (2) (3) 

Figure 6.1 

(a) 
O O O O OO O 

(b) 
OO O O OOO 

(c) 

Figure 6.2 

47 
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In how many different ways can this be done? This is an example of 
the type of problem we shall discuss in this chapter. We shall see how 
problems of this type can be solved by applying (BP). 

In Figure 6.2, by treating each vertical bar as a "1" and each ball as 
a "0", each way of distribution becomes a 9-digit binary sequence with 
two l's. For instance, 

(a) • 000010010, 

(b) > 001001000, 

(c) • 0 110 0 0 0 0 0. 

Obviously, this correspondence establishes a bijection between the set 
of ways of distributing the balls and the set of 9-digit binary sequences 
with two l's. Thus, by (BP), the number of ways of distributing the 
seven identical balls into three distinct boxes is (2). 

In general, we have: 

The number of ways of distributing r identical balls into 
i distil 

(r+r1),by(3.6). 
n distinct boxes is given by ( r^"x ), which is equal to (6.1) 

In the distribution problem discussed above, some boxes may be 
vacant at the end. Supposing no box is allowed to be vacant, how many 
ways are there to distribute the seven identical balls into three distinct 
boxes? 

To meet the requirement that no box is vacant, we first put a ball in 
each box and this is counted as one way because the balls are identical. 
We are then left with 4 (= 7 — 3) balls, but we are now free to distribute 
these 4 balls into any box. By the result (6.1), the number of ways this 
can be done is (^t^1) = (2) • Thus, the number of ways to distribute 7 
identical balls into 3 distinct boxes so that no box is empty is (,). 

In general, suppose we wish to distribute r identical balls into n 
distinct boxes, where r > n, in such a way that no box is vacant. This 
can be done in the following steps: First, we put one ball in each box; 
and then distribute the remaining r - n balls to the n boxes in any 
arbitrary way. As the balls are identical, the number of ways for the 
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first step to be done is 1. On the other hand, by the result (6.1), the 
number of ways to do the second step is 

(r — n) + n — 1 
n - 1 

Thus, by (MP) and upon simplification, we arrive at the following result. 

The number of ways to distribute r identical balls into n 
distinct boxes, where r > n, so that no box is empty is 
given by (£~J), which is equal to £~J) . 

(6.2) 

Example 6.1 There are 11 men waiting for their turn in a barber 
shop. Three particular men are A, B and C. There is a row of 11 seats 
for the customers. Find the number of ways of arranging them so that 
no two of A, B and C are adjacent. 

Solution There are different ways to solve this problem. We shall see 
in what follows that it can be treated as a distribution problem. 

First of all, there are 3! ways to arrange A, B and C. Fix one of the 
ways, say A—B—C. We then consider the remaining 8 persons. Let us 
imagine tentatively that these 8 persons are identical, and they are to be 
placed in 4 distinct boxes as shown in Figure 6.3 so that boxes (2) and 
(3) are not vacant (since no two of A,B and C are adjacent). To meet 
this requirement, we place one in box (2) and one in box (3). Then the 
remaining six can be placed freely in the boxes in i6^^1) = (jj) ways 
by (6.1). (Figure 6.4 shows a way of distribution.) 

S~ 
O o o 
ooo 

(1) 
o 
(2) 

B o 
(3) (4) 

Figure 6.3 
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Q O A O O B O C O O P 
(1) (2) (3) (4) 

Figure 6.4 

But the eight persons are actually distinct. Thus, to each of these 
(3) ways, there are 8! ways to arrange them. 

Hence by (MP), the required number of ways is 3!(3)8!, which is 
8! 9 • 8 • 7. • 

Remark The answer, 8! 9 • 8 • 7, suggests that the problem can be 
solved in the following way. We first arrange the 8 persons (excluding 
A, B and C) in a row in 8! ways. Fix one of these ways, say 

X\ X2 X-} X4 X$ ^ 6 X7 Xg 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

We now consider A. There are 9 ways to place A in one of the 9 boxes, 
say box (4): 

X\ X2 X3 A A4 X5 X$ X-] Xg 

HT ~W (3) (4) (5) ~W ~W (8) (9) 

Next, consider B. Since A and B cannot be adjacent, B can be placed 
only in one of the remaining 8 boxes. Likewise, C can be placed only in 
one of the remaining 7 boxes. The answer is thus 8! 9 • 8 • 7. 

Exercise 

6.1 There are four types of sandwiches. A boy wishes to place an 
order of 3 sandwiches. How many such orders can he place? 

6.2 Calculate the number of distinct 9-letter arrangements which can 
be made with letters of the word SINGAPORE such that no two 
vowels are adjacent. 

6.3 There is a group of 10 students which includes three particular 
students A, B and C. Find the number of ways of arranging the 
10 students in a row so that B is always between A and C. {A 
and B, or B and C need not be adjacent.) 
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6.4 Six distinct symbols are transmitted through a communication 
channel. A total of 18 blanks are to be inserted between the 
symbols with at least 2 blanks between every pair of symbols. 
In how many ways can the symbols and blanks be arranged? 
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Chapter 7 

More Applications of (BP) 

We shall give additional examples in this chapter to show more appli­
cations of (BP). 

Consider the following linear equation: 

xi + x2 + x3 = 7. (1) 

If we put x\ = 4, X2 = 1 and x% = 2, we see that (1) holds. Since 
4, 1, 2 are nonnegative integers, we say that (xi,X2,xz) = (4,1,2) is 
a nonnegative integer solution to the linear equation (1). Note that 
(x\,X2,xs) = (1,2,4) is also a nonnegative integer solution to (1), and 
so are (4, 2, 1) and (1, 4, 2). Other nonnegative integer solutions to (1) 
include 

(0,0,7), (0,7,0), (1,6,0), (5 ,1 ,1) , . . . . 

Example 7.1 Find the number of nonnegative integer solutions to (1). 

Solution Let us create 3 distinct "boxes" to represent xi,x2 and 
£3, respectively. Then each nonnegative integer solution (xi,X2,X3) = 
(a,b,c) to (1) corresponds, in a natural way, to a way of distributing 7 
identical balls into boxes so that there are a, b and c balls in boxes (1), 
(2) and (3) respectively (see Figure 7.1). 

This correspondence clearly establishes a bijection between the set of 
nonnegative integer solutions to (1) and the set of ways of distributing 7 
identical balls in 3 distinct boxes. Thus, by (BP) and the result of (6.1), 
the number of nonnegative integer solutions to (1) is ( ^_Y ) — (2)- ^ 

53 
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(4, 1, 2) 

(2, 5,0) 

-> 0000 | 0 | 00 
(1) (2) (3) 

-> 00 | 00000 1 
(1) (2) (3) 

Figure 7.1 

By generalizing the above argument and applying the results (6.1) 
and (6.2), we can actually establish the following general results. 

Consider the linear equation 

x\ + a>2 H \-xn = r 

where r is a nonnegative integer. 

(2) 

(i) The number of nonnegative integer solutions to (2) is 
given by (r+^1). 

(ii) The number of positive integer solutions (x\,X2,..., 
xn) to (2), with each Xj > 1, is given by (£Z„)> where 
r > n and i = 1,2,... ,n. 

(7.1) 

Example 7.2 Recall that the number of 3-element subsets {a, b, c} of 
the set N10 = {1,2 ,3 , . . . ,10} is (1

3°). Assume that a < b < c and 
suppose further that 

b-a>2 and c - b > 2 (3) 

(i.e. no two numbers in {a,b,c} are consecutive). For instance, {1,3,8} 
and {3,6,10} satisfy (3) but not {4,6,7} and {1,2,9}. How many such 
3-element subsets o/Nio are there? 

Solution Let us represent a 3-element subset {a, b, c} of Nio satisfying 
(3) by a 10-digit binary sequence as follows: 

{1,3,8} 

{3,6,10} 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

- + 1 0 1 0 0 0 0 1 0 0 

- + 0 0 1 0 0 1 0 0 0 1 
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Note that the rule is similar to the one introduced in Example 5.2. 
Clearly, this correspondence is a bijection between the set A of 3-element 
subsets of Nio satisfying (3) and the set B of 10-digit binary sequences 
with three l 's in which no two l's are adjacent. Thus \A\ = \B\. But 
how do we count \B\1 Using the method discussed in Example 6.1, we 
obtain 

w-C?-*4-1)-®-
Thus |A| = (5). • 

Example 7.3 Two tennis teams A and B, consisting of 5 players 
each, will have a friendly match playing only singles tennis with no ties 
allowed. The players in each team are arranged in order: 

A : a i ,a2,a 3 ,a 4 ,a5 , 

B : h,b2,b3,b4,b5. 

The match is run in the following way. First, a\ plays against b\. Sup­
pose ai wins (i.e. b\ is eliminated). Then a\ continues to play against 
62; if ai is beaten by 62 (&-e. a\ is eliminated), then 62 continues to play 
against a2, and so on. What is the number of possible ways in which all 
the 5 players in team B are eliminated? (Two such ways are shown in 
Figure 7.2.) 

Solution Let Xi be the number of games won by player a^, i — 
1,2,3,4,5. Thus, in Figure 7.2(i), 

x\ = 2, £2 = 0 j £3 = 3 , £4 = X5 = 0 

and in Figure 7.2(h), 

xi = x2 — 0, X3 = 2 , £4 = 1, £5 = 2. 

In order for the 5 players in team B to be eliminated, we must have 

xi + x2 + x3 + £4 + x5 = 5 (4) 

and the number of ways this can happen is, by (BP), the number 
of nonnegative integer solutions to (4). Thus, the desired answer is 
(5+4 -1) = (4),bytheresult7.1(i) . • 
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a,\ a-i a-?, «4 a$ 

b\ b2 b3 b4 b5 

(i) 

a\ ai an, a± a$ 

\AAAA 
b\ 62 ^3 i>4 b$ 

(ii) 
"o ->• 6" means "a beats 6" 

Figure 7.2 

Example 7.4 Eight letters are to be selected from the five vowels 
a,e,i,o,u with repetition allowed. In how many ways can this be done 

if 

(i) there are no other restrictions? 
(ii) each vowel must be selected at least once? 

Solution (i) Some examples of ways of the selection are given below: 

(1) a,a,u,u,u,u,u,u; 
(2) a, e,i,i,i,o, o, u; 
(3) e,e,i,i,o,o,u,u. 

As shown in Figure 7.3, these selections can be treated as ways of dis­
tributing 8 identical objects into 5 distinct boxes. 

(i) < > • • 1 I 1 IS 11 
(2) < > • • • • • • • • 
(3) <—> l » « l » » l « » l » r 

a e i o u 

Figure 7.3 

file:///AAAA
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Thus, by (BP) and the result (6.1), the number of ways of selection 
is given by f ^ - 1 ) , i.e. ft2). 

(ii) As shown in the second row of Figure 7.3, a way of selection 
which includes each vowel can be treated as a way of distribution such 
that no box is empty. Thus, by (BP) and the result (6.2), the number 
of ways of selection is given by (g~g), i.e. Q . • 

Example 7.5 Consider the following two 13-digit binary sequences: 

1110101110000, 

1000110011110. 

For binary sequences, any block of two adjacent digits is of the form 
00,01,10 or 11. In each of the above sequences, there are three 00, two 
01, three 10 and four 11. Find the number ofl3-digit binary sequences 
which have exactly three 00, two 01, three 10 and four 11. 

Solution To have exactly three 10 and two 01 in a sequence, such 
a sequence must begin with 1, end with 0, and have the changeovers 
of 1 and 0 as shown below, where each of the boxes (1), (3) and (5) 
(respectively (2), (4) and (6)) contains only l's (respectively 0's) and at 
least one 1 (respectively 0). 

[10] [01] [10] [01] [10] 

I 1 I 0 I 1 1 0 I 1 I 0 I 
(1) (2) (3) (4) (5) (6) 

For instance, the two sequences given in the problem are of the form: 

I 111 I 0 I 1 I 0 I 111 I 0000 | 
(1) (2) (3) (4) (5) (6) 

1 1 | 000 | 11 1 00 1 1111 | 0 | 
(1) (2) (3) (4) (5) (6) 

To have three 00 and four 11 in such a sequence, we must 

(i) put in three more 0's in boxes (2), (4) or (6) (but in an arbitrary 
way), and 

(ii) put four more l's in boxes (1), (3) or (5) (also in an arbitrary way). 
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(Check that there are 13 digits altogether.) The number of ways to do 
(i) is ( 3 + ^ 1 ) , i.e. g ) ; while that of (ii) is (4 +4_ 1), i.e. (5). Thus, by 
(MP), the number of such sequences is (2) (2)) l-e- 150. • 

Example 7.6 Consider the following three arrangements of 5 persons 
A,B,C,D,E in a circle: 

(i) 

Two arrangements ofn objects in a circle are considered different if and 
only if there is at least one object whose neighbour on the right is differ­
ent in the two arrangements. Thus arrangements (i) and (ii) above are 
considered identical, while arrangement (iii) is considered different from 
(i) and (ii). (Note that the right neighbour of A in arrangement (iii) is 
C while that in both (i) and (ii) is B.) Find the number of arrangements 
of the 5 persons in a circle. 

Solution For each arrangement of the 5 persons in a circle, let us line 
the 5 in a row as follows: We always start with A at the left end. Then 
we place the right neighbour of A (in the circle) to the right of A in the 
row. We continue, in turn, to place the right neighbour (in the circle) 
of the last placed person to his right in the row until every person is 
arranged in the row. (We can also visualize this as cutting the circle at A 
and then unraveling it to form a line.) Then each circular arrangement 
of the 5 persons corresponds to an arrangement of 5 persons in a row 
with A at the left end. Now, since A is always fixed at the left end, 
he can be neglected and the arrangement of 5 persons in a row can be 
seen to correspond to an arrangement of only 4 persons (B,C,D,E) in 
a row (see Figure 7.5). 
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B, 

-> ABCDE- -> BCDE 

'D 

->ACBDE- ->CBDE 

Figure 7.5 

This correspondence clearly establishes a bijection between the set 
of arrangements of 5 persons in a circle and the set of arrangements of 
4 persons in a row. Thus, by (BP) and the result of (3.1), the number 
of arrangements of 5 persons in a circle is 4!. • 

By generalizing the above argument, we can establish the following 
result: 

The number of ways of arranging n distinct objects in a 
circle is given by (n — 1)!. 

(7.2) 

Exercise 

7.1 Find the number of integer solutions to the equation: 

in each of the following cases: 

(i) Xi > 0 for each i = 1,2,.. . , 5; 
(ii) x\ > 3, X2 > 5 and Xi > 0 for each i = 3,4,5; 

(iii) 0 < #1 < 8 and X{ > 0 for each i = 2,3,4,5; 
(iv) X\ + X2 = 10 and x; > 0 for each i = 1,2,. . . , 5; 
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(v) Xi is positive and odd (respectively, even) for each i = 
1,2, . . . ,5. 

7.2 An illegal gambling den has 8 rooms, each named after a different 
animal. The gambling lord needs to distribute 16 tables into the 
rooms. Find the number of ways of distributing the tables into 
the rooms in each of the following cases: 

(i) Horse Room holds at most 3 tables. 
(ii) Each of Monkey Room and Tiger Room holds at least 2 ta­

bles. 

7.3 The number 6 can be expressed as a product of three factors in 
9 ways as follows: 

1-1-6, 1-6-1, 6-1-1, 1-2-3, 1-3-2, 2-1-3, 2-3-1, 3-1-2, 3-2-1. 

In how many ways can each of the following numbers be so 
expressed? 

(i) 2592 
(ii) 27000 

7.4 Find the number of integer solutions to the equation: 

£i + ^2 + ^3 + X4 — 30 

in each of the following cases: 

(i) Xi > 0 for each i = 1,2,3,4; 
(ii) 2 < x\ < 7 and Xi > 0 for each i = 2,3,4; 

(iii) x\ > —5,X2 > —1,0:3 > 1 and £4 > 2. 

7.5 Find the number of quadruples (w, x, y, z) of nonnegative integers 
which satisfy the inequality 

w + x + y + z < 2002. 

7.6 Find the number of nonnegative integer solutions to the equation: 

5a:i + x2 + 23 + £4 = 14. 

7.7 There are five ways to express 4 as a sum of two nonnegative 
integers in which the order matters: 

4 = 4 + 0 = 3 + 1 = 2 + 2 = 1 + 3 = 0 + 4 . 
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Given r, n € N, what is the number of ways to express r as a sum 
of n nonnegative integers in which the order matters? 

7.8 There are six ways to express 5 as a sum of three positive integers 
in which the order matters: 

5 = 3+1+1 = 2+2+1 = 2+1+2 = 1+3+1 = 1+2+2 = 1+1+3. 

Given r, n € N with r >n, what is the number of ways to express 
r as a sum of n positive integers in which the order matters? 

7.9 Find the number of 4-element subsets {a, b, c, d} of the set N20 = 
{1 ,2 , . . . , 20} satisfying the following condition 

6 - a > 2 , c - 6 > 3 and d-c>4. 

7.10 In a sequence of coin tosses, one can keep a record of the 
number of instances when a tail is immediately followed by a 
head, a head is immediately followed by a head, etc. We de­
note these by TH,HH, etc. For example, in the sequence 
HHTTHHHHTHHTTTT of 15 coin tosses, we observe that 
there are five HH, three HT, two TH and four TT subsequences. 
How many different sequences of 15 coin tosses will contain ex­
actly two HH, three HT, four TH and five TT subsequences? 

(AIME) 
7.11 Show that the number of ways of distributing r identical objects 

into n distinct boxes such that Box 1 can hold at most one object 
is given by 

/ r + n - 3 \ fr + n-2\ 

( , - , ) + ( r J' 
7.12 In a new dictatorship, it is decided to reorder the days of the 

week using the same names of the days. All the possible ways of 
doing so are to be presented to the dictator for her to decide on 
one. How many ways are there in which Sunday is immediately 
after Friday and immediately before Thursday? 

7.13 Five couples occupy a round table at a wedding dinner. Find the 
number of ways for them to be seated if: 

(i) every man is seated between two women; 
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(ii) every man is seated between two women, one of whom is his 
wife; 

(iii) every man is seated with his wife; 
(iv) the women are seated on consecutive seats. 

7.14 The seats at a round table are numbered from 1 to 7. Find the 
number of ways in which a committee consisting of four men and 
three women can be seated at the table 

(i) if there are no restrictions; 
(ii) if all the men sit together. ,„-. 

7.15 Four men, two women and a child sit at a round table. Find 
the number of ways of arranging the seven people if the child is 
seated 

(i) between the two women; 
(ii) between two men. ,_,* 



Chapter 8 

Distribution of Distinct Objects into 
Distinct Boxes 

We have seen from the various examples given in Chapters 6 and 7 
that the distribution problem, which deals with the counting of ways 
of distributing objects into boxes, is a basic model for many counting 
problems. In distribution problems, objects can be identical or distinct, 
and boxes too can be identical or distinct. Thus, there are, in general, 
four cases to be considered, namely 

Table 8.1 

(1) 
(2) 
(3) 
(4) 

Objects 

identical 
distinct 
distinct 
identical 

Boxes 

distinct 
distinct 
identical 
identical 

We have considered Case (1) in Chapters 6 and 7. Cases (3) and (4) will 
not be touched upon in this booklet. In this chapter, we shall consider 
Case (2). 

Suppose that 5 distinct balls are to be put into 7 distinct boxes. 

Example 8.1 In how many ways can this be done if each box can 
hold at most one ball? 

Example 8.2 In how many ways can this be done if each box can 
hold any number of balls? 
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Solution Before we proceed, we would like to point out that the 
ordering of the distinct objects in each box is not taken into con­
sideration in the discussion in this chapter. 

We first consider Example 8.1. As shown in Figure 8.1, let a,b,c,d 
and e denote the 5 distinct balls. First, we put a (say) into one of the 
boxes. There are 7 choices. 

I 
(1) (2) (3) (4) 

Figure 8.1 

(5) (6) (7) 

Next, we consider b (say). As each box can hold at most one ball, 
and one of the boxes is occupied by a, there are now 6 choices for 
b. Likewise, there are, respectively, 5, 4 and 3 choices for c, d and 
e. Thus, by (MP), the number of ways of distribution is given by 
7 - 6 - 5 - 4 - 3 . 

Note that the above answer can be expressed as P j which, as denned 
in Chapter 3, is the number of ways of arranging any 5 objects from 
7 distinct objects. The fact that the above answer is P j does not sur­
prise us as there is a 1-1 correspondence between the distributions of 
5 distinct balls into 7 distinct boxes and the arrangements of 5 distinct 
objects from 7 distinct objects as shown in Figure 8.2. (Find out the 
rule of the correspondence.) 

{a,b,c,d,e} {1,2,3,4,5,6,7} 

b 
e 

c 
d c 

a 
b 

e d 
a 

-> 41275 
-> 74321 

(1) (2) (3) (4) (5) (6) (7) 

Figure 8.2 
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In general, we have: 

The number of ways of distributing r distinct objects into 
n distinct boxes such that each box can hold at most one 
object (and thus r < n) is given by P™, which is equal to 
n\/(n — r)\. 

(8.1) 

We now consider Example 8.2. There are 7 ways of putting a in 
the boxes. As each box can hold any number of balls, there are also 7 
choices for each of the remaining balls b, c, d and e. Thus, by (MP), the 
answer is 75. 

In general, we have: 

The number of ways of distributing r distinct objects into 
n distinct boxes such that each box can hold any number 
of objects is given by nr. 

(8.2) 

Exercise 

8.1 Find the number of ways for a teacher to distribute 6 different 
books to 9 students if 

(i) there is no restriction; 
(ii) no student gets more than one book. 

8.2 Let A be the set of ways of distributing 5 distinct objects into 
7 distinct boxes with no restriction, and let B be the set of 5-digit 
numbers using 1, 2, 3, 4, 5, 6, 7 as digits with repetition allowed. 
Establish a bijection between A and B. 

8.3 Five friends go to a Cineplex which contains 6 theatres each 
screening a different movie and 2 other theatres screening the 
current blockbuster. Find the number of ways the friends can 
watch a movie in each of the following cases: 

(i) two of the friends must be together; 
(ii) the theatres do not matter, only the movies do. 
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Find the number of ways of distributing 8 distinct objects into 
3 distinct boxes if each box must hold at least 2 objects. 
Suppose that m distinct objects are to be distributed into n dis­
tinct boxes so that each box contains at least one object. State 
a restriction on m with respect to n. In how many ways can the 
distribution be done if 

(i) m — n? 
(ii) m = n + 1? 

(iii) m = n + 2? 



Chapter 9 

Other Variations of the 
Distribution Problem 

Two cases of the distribution problem were discussed in the preceding 
chapters. In this chapter, we shall study some of their variations. 

When identical objects are placed in distinct boxes, whether the 
objects in each box are ordered or not makes no difference. The situa­
tion is no longer the same if the objects are distinct as shown in 
Figure 9.1. 

| de \ ab c \ | [ ed \ cba | | 
(1) (2) (3) (1) (2) (3) 

Figure 9.1 

In Chapter 8, we did not consider the ordering of objects in each 
box. In our next example, we shall take it into account. 

Example 9.1 Suppose that 5 distinct objects a, b, c, d, e are distributed 
into 3 distinct boxes, and that the ordering of objects in each box matters. 
In how many ways can this be done? 

Solution First, consider a (say). Clearly, there are 3 choices of a box 
for a to be put in (say, a is put in box (2)). Next, consider b. The object 
b can be put in one of the 3 boxes. The situation is special if 6 is put 
in box (2) because of the existence of a in that box. As the ordering of 
objects in each box matters, if b is put in box (2), then there are two 
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choices for b, namely, left of a or right of a as indicated in Figure 9.2. 
Thus, altogether, there are 4 choices for b. 

Assume that b is put in box (3). Now, consider c. As shown in 
Figure 9.3, c has 5 choices. 

Figure 9.3 

Continuing in this manner, we see that d and e have, respectively, 6 and 
7 choices. Thus, the answer is given by 3 • 4 • 5 • 6 • 7. • 

Let us try a different approach to solve the above problem. First, we 
pretend that the objects a, b, c, d, and e are all identical. The number 
of ways of distributing 5 identical objects into 3 distinct boxes is, by 
result (6.1), (5 +5_ 1), i-e. Q . Next, take such a way of distribution, say, 

00 000 
(1) (2) (3) 

Since the 5 objects are actually distinct and the ordering of objects mat­
ters, such a distribution for identical objects corresponds to 5! different 
distributions of distinct objects. Thus, by (MP), the answer is given by 
(2) • 5! which agrees with the answer 3 • 4 • 5 • 6 • 7. 

In general, we have: 
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The number of ways of distributing r distinct objects into 
n distinct boxes such that the ordering of objects in each 
box matters is given by 

which is equal to 

n(n + l)(n + 2 ) . . . (n + r - 1). 

In our previous discussion on the distribution problem, objects were 
either all identical or all distinct. We now consider a case that is a 
mixture of these two. 

Example 9.2 Four identical objects "a", three identical objects "b" 
and two identical objects "c" are to be distributed into 9 distinct boxes 
so that each box contains one object. In how many ways can this be 
done? 

Solution Let's start with the four a's. Among the 9 boxes, we choose 
4 of them, and put one a in each chosen box. Next, we consider the 
three 6's. From among the 5 remaining boxes, we choose 3, and put one 
b in each chosen box (see Figure 9.4). Finally, we put one c in each of 
the 2 remaining boxes. 

Figure 9.4 

There are Q ways for step 1, (3) ways for step 2 and (%)(= 1) way for 
step 3. Thus, by (MP), the answer is given by 

(9.1) 
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Remark In the above solution, a is considered first, followed by b 
and finally c. The answer is independent of this order. For instance, 
if b is considered first, followed by c and then a, by applying a similar 
argument we arrive at (3) (2) (4), which is again 9! 

4!3!2! • 

There is a 1-1 correspondence between the distributions considered 
in Example 9.2 and the arrangements of 4 a's, 3 6's and 2 c's in a row 
as shown in Figure 9.5. 

1 a 

1 c 

c 

c 

a 

b 

b 

b 

a 

b 

a 

a 

b 

a 

b 

a 

c | 

a I 

<-

<-

acabaabbc 

ccbbbaaaa 

Figure 9.5 

Thus, by the result of Example 9.2, the number of arrangements of 4 
a's, 3 b's and 2 c's in a row is given by 

9! 
4!3!2! 

In general, 

Suppose there are n\ identical objects of type 1, n<i 
identical objects of type 2 , . . . , and n& identical objects 
of type k. Let n — n\ + ri2 +... + rik- Then the number 
of arrangements of these n objects in a row is given by 

n \ j n — n\ 
n\) \ n2 

which is equal to 

n • n i ra/fc-i 

«fc 

n\ 
n\\n2\. ,nk\ 

(9.2) 

Let us reconsider Example 9.1. We observe that there is a 1-1 cor­
respondence between the distributions considered in Example 9.1 and 
the arrangements of a, b, c, d, e and two l's as shown in Figure 9.6. 

By the above result, the number of arrangements of a,b,c,d,e and 
two l's is given by | | , which agrees also with the earlier two answers. 
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be 
cde 

a dc 
ba 

; > be\a\dc 
: > cde 11 ba 

(1) (2) (3) 

Figure 9.6 

Exercise 

9.1 Calculate the number of different arrangements which can be made 
using all the letters of the word BAN AN ARAM A. 

9.2 Calculate the number of distinct 8-letter arrangements which can 
be made with letters of the word INFINITE. How many of these 
begin with III? 

(C) 
9.3 Find the number of arrangements of 4 identical squares, 5 identical 

pentagons and 6 identical hexagons in a row if 

(i) there is no restriction; 
(ii) no two pentagons are adjacent; 

(iii) any two squares are separated by at least two other polygons. 

9.4 Let A = {1 ,2 , . . . , m} and B = {1 ,2 , . . . , n} where m, n > 1. Find 
the number of 

(i) mappings from A to B; 
(ii) 1-1 mappings from A to B (here m < n); 

(iii) mappings f : A —t B such that /(«') < f(j) in B whenever 
i < j in A (here m < n); 

(iv) mappings f : A-* B such that / ( l ) = 1. 

9.5 Let A = {1 ,2 , . . . , m} and B = {1 ,2 , . . . , n}. Find the number of 
onto mappings from A to B in each of the following cases: 

(i) m = n; 
(ii) m = n + 1; 

(iii) m = n + 2. 

(Compare this problem with Problem 8.5.) 
9.6 Ten cars take part in an Automobile Association of Singapore 

autoventure to Malaysia. At the causeway, 4 immigration counters 
are open. In how many ways can the 10 cars line up in a 4-line 
queue? 
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9.7 Solve Problem 8.5 with an additional condition that the ordering 
of objects in each box counts. 

9.8 Show that 

n\ (n — ni\ (n — ni — • • • — rik-\\ n\ 
n\) \ 712 / V nh ) n\\n^. • • • n\^. 

where n = n\ + ni -\ 1- n^. 



Chapter 10 

The Binomial Expansion 

In Chapter 3, we introduced a family of numbers which were denoted 
by (™) or C™. Given integers n and r with 0 < r < n, the number (") is 
defined as the number of r-element subsets of the set Nn = {1 ,2 , . . . , n}. 
That is, (") is the number of ways of selecting r distinct objects from a 
set of n distinct objects. We also derived the following formula for ("): 

(10.1) 

By applying (10.1), or otherwise, we can easily derive some interesting 
identities involving these numbers such as: 

0 
\r J \n — r J ' 

-C-lH'r1)-
( - ( - l 1 ) - ' 2 1 -

(10.2) 

(10.3) 

(10.4) 
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(10.5) 

In this chapter, we shall learn more about this family of numbers 
and derive some other important identities involving them. 

In algebra, we learn how to expand the algebraic expression (1 + x)n 

for n = 0,1,2,3. Their expansions are shown below: 

(1 + *)° = 1, 

(l + x)1 = l + xt 

(1 + x)2 = 1 + 2x + x2, 

(1 + x)3 = 1 + 3x + 3x2 + x3 . 

Notice that the coefficients in the above expansions are actually numbers 
of the form ("). Indeed, we have: 

- (c ) ' •-(!)• ' - (0 -

- G ) . - ( ; ) • - ( ; ) • HD-
What can we say about the coefficients in the expansion of (1 + x)4? 
Will we obtain 

^"••(;)+(0-+(J)- ,+(J)'+(J)' ,T 

Let us try to find out the coefficient of x2 in the expansion of (1 + x)4 . 
We may write 

(1 + x)4 = (1 + x)(l + x)(l + x)(l + x ) . 

(1) (2) (3) (4) 
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Table 10.1 

(1) 

X 

X 

X 

(2) 

X 

X 

X 

(3) 

X 

X 

X 

(4) 

X 

X 

X 

Observe that in the expansion, each of the factors (1), (2), (3) and (4) 
contributes either 1 o n , and they are multiplied together to form a 
term. For instance, to obtain x2 in the expansion, two of (1), (2), (3) 
and (4) contribute x and the remaining two contribute 1. How many 
ways can this be done? Table 10.1 shows all the possible ways, and the 
answer is 6. 

Thus, there are 6 terms of a;2 and the coefficient of a;2 in the expansion 
of (1 + x)4 is therefore 6. Indeed, to select two x's from four factors 
(1 + x), there are (*,) ways (while the remaining two have no choice 
but to contribute "1"). Thus the coefficient of x2 in the expansion of 
(1 + x)4 is (2) which is 6. Using a similar argument, one can readily see 
that 

In general, what can be said about the expansion of (1 + x)n, where 
n is any natural number? 

Let us write 

(l + x)n = (l + x)(l + x ) . . . ( l + x ) . (*) 
(1) (2) (n) 

To expand (1 + x)n , we first select 1 or x from each of the n factors 
(1 + x), and then multiply the n chosen l's and x's together. The 
general term thus obtained is of the form x r , where 0 < r < n. What 
is the coefficient of xr in the expansion of (1 + x)n if the like terms are 
grouped? This coefficient is the number of ways to form the term xr in 
the product (*). To form a term xr, we choose r factors (1 + x) from the 
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n factors (1 + x) in (*) and select x from each of the r chosen factors. 
Each of the remaining n — r factors (1 + x) has no other option but 
to contribute 1. Clearly, the above selection can be done in (™) ways. 
Thus, the coefficient of xr in the expansion of (1 + x)n is given by (™). 
We thus arrive at the following result: 

The Binomial Theorem 
For any natural number n, 

( i + . , - - ( ; ) + l 

< > 

(BT) 

: : ) • 

»• + . . . 

+1 

+ 

: ; ) 
x2 + ---

) x n . 

(10.6) 

Exercise 

10.1 By applying Identity (10.1), or otherwise, derive the following 
identities: 

(n) oo = {r)Cz)-
10.2 In the expansion of (1 + x)100 , it is known that the coefficients of 

xr and x3r, where 1 < r < 33, are equal. Find the value of r. 

10.3 What is the largest value of k such that there is a binomial ex­
pansion (1 + x)n in which the coefficients of k consecutive terms 
are in the ratio 1 : 2 : 3 : . . . : kl Identify the corresponding 
expansion and the terms. 



Chapter 11 

Some Useful Identities 

We gave four simple identities involving binomial coefficients, namely 
(10.2)-(10.5), in Chapter 10. In this chapter, we shall derive some more 
identities involving binomial coefficients from (BT). These identities, 
while interesting in their own right, are also useful in simplifying certain 
algebraic expressions. 

Consider the expansion of (1 + x)n in (BT). If we let x = 1, we then 
obtain from (BT) the following 

(n\ 
+ 

fn^ 
+ 

(n*) 

W 
+ • • + 

fn\ 

W 
= 2 n . 

Example 11.1 In Example 5.2, we discussed a counting problem on 
V(S), the set of all subsets of a finite set S. If S is an n-element 
set (i.e. | 5 | = n), it can be shown (see Problem 5.3) by establishing 
a bijection between V(S) and the set of n-digit binary sequences that 
there are exactly 2n subsets of S inclusive of the empty set (f> and the 
set S itself (i.e. ^(S1)! = 2n). We can now give a more natural proof 
for this fact. Assume that \S\ — n. By definition, the number of 

0-element subsets of S is 

1-element subsets of S is 

77 
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2-element subsets of S is n 

n-element subsets of S is 0 
Thus, 

\ns)\ = n n 
+ 1 l ) + 

(by (Bl)) 

+ ••• + 

• 
Example 11.2 The number 4 can be expressed as a sum of one or 
more positive integers, taking order into account, in the following 8 
ways: 

4 = 4 = 1 + 3 

= 3 + 1 = 2 + 2 

= 1 + 1 + 2 = 1 + 2 + 1 

= 2 + 1 + 1 = 1 + 1 + 1 + 1. 

Show that every natural number n can be so expressed in 2 n _ 1 ways. 

Solution This is in fact Problem 5.5. Let us see how (Bl) can be 
used to prove the result. But first of all, consider the special case above 
when n = 4. 

We write 4 = 1 + 1 + 1 + 1 and note that there are three "+"s in the 
expression. Look at the following relation. 

4 <—y 1 + 1 + 1 + 1 (no "+" is chosen) 

4 

> (one "+" is chosen) 
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l + l + 2<—• 1 
1 

1 + 2 + 1 ̂ —> 1 
l 

i 1 ® 1 + 1 
1 2 

i + i e l 
2 1 

2 + 1 + 1 <—n + i e l © I 

2 1 1 

1 + 1 + 1 + 1 ^ — > - ^ l ^ © l © l 
1 1 1 

(2 "+"s are chosen) 

(3 "+"s are chosen) 

This correspondence is actually a bijection between the set of all such 
expressions of 4 and the set of all subsets of three "+"s. Thus, by (BP) 
and (Bl), the required answer is 

In general, write 

; • : + « • : > - * • 

n = l + l + --- + l + l 
" v ' 

n 
and note that there are n — 1 "+"s in the above expression. We now 
extend the above technique by establishing a bijection between the set 
of all such expressions of n and the set of all subsets of n — 1 "+"s. 
Thus, by (BP) and (Bl), the number of all such expressions of n is 

n - l \ (n — \ \ (n — \ \ „ _ i 

o + i + - + U-i 1 = 2 D 

Consider again the expansion of (1 + x)n in (BT). If we now let 
x — — 1, we then have 

where the terms on the LHS alternate in sign. Thus, if n is even, say 
n = 2k, then 

n \ ( n , 
o) + ( 2

l + - + U) - (" + f3 + - + Ufc-1 
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and if n is odd, say n = 2k + 1, then 

( : ) + ( ; ) + - + U)- (T) + ( : ) + - -
As 

by (Bl), w 

[ ( : ) • ( ; ) • ••• ] 
e have: 

+ [Q + G) + - ] 

n 
2k + 1 

= 2n 

c; + it + e ! + • 

= - (2 n ) = 2 " - 1 . 
Li 

e + -
(B2) 

Example 11.3 yl /mite set S is said to be "even" ("odd") if \S\ is 
even (odd). Consider Ns = {1 ,2 , . . . , 8}. How many even (odd) subsets 
does Ns have? 

Solution The number of even subsets of Ns is 

and the number of odd subsets of Ns is 

By (B2), 

'8 
0 + + • • • + ! + G ' + 

= 2 8 _ 1 .= 27 = 128. 

+ 

• 
Consider the following binomial expansion once again: 

(1 + x)n = n n 
+ l 1 ) * + l 2 l * ' + 

n n z3 + + n 
n 

x 
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If we treat the expressions on both sides as functions of x, and differen­
tiate them with respect to x, we obtain: 

^ i + . r - = ( - ) + 8 ( ; ) , + , ( ; ) ^ + . . . + - ( ; ) ^ - . 

By letting x — 1 in the above identity, we have: 

n 

E*l 
k=i 

I n * 

\ k i - f? 
= n2n" 

) + 2 | 

-1 

f n \ | + » | c n ^ 

3 l + - • + n 
( ' : ) 

Let us try to derive (B3) by a different way. Consider the following 
problem. Suppose that there are n(n > 1) people in a group, and they 
wish to form a committee consisting of people from the group, including 
the selection of a leader for the committee. In how many ways can this 
be done? 

Let us illustrate the case when n = 3. Suppose that A, B, C are the 
three people in the group, and that a committee consists of k members 
from the group, where 1 < k < 3. For k = 1, there are 3 ways to do so 
as shown below. 

Committee members 

A 
B 
C 

Leader 

A 
B 
C 

For k — 2, there are 6 ways to do so as shown below. 

Committee members 

A, B 
A, B 
A, C 
A, C 
B, C 
B, C 

Leader 

A 
B 
A 
C 
B 
C 
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For k = 3, there are 3 ways to do so as shown below. 

Committee members 

A, B, C 
A, B, C 
A, B, C 

Leader 

A 
B 
C 

Thus, there are altogether 3 -f- 6 + 3 = 12 ways to do so. 
In general, from a group of n people, there are (£) ways to form a 

A;-member committee, and k ways to select a leader from the k mem­
bers in the committee. Thus, the number of ways to form a fc-member 
committee including the selection of a leader is, by (MP), &(£). As k 
could be 1,2,... ,n, by (AP), the number of ways to do so is given by 

E 
fc=i 

k 

Let us count the same problem via a different approach as follows. 
First, we select a leader from the group, and then choose k — 1 members, 
where k = 1,2,. . . , n, from the group to form a fc-member committee. 
There are n choices for the first step and 

n - 1 
0 

4- n 1 
+ ••• + n — l 

n - 1 

ways for the second step. Thus, by (MP) and (Bl), the required number 
is 

n 
n - 1 

0 + 
n - 1 

+ • • • + n - 1 
n - 1 

= n 2 " _ 1 

Since both 

fc=l 

and n2 ,n—1 

count the same number, identity (B3) follows. 
In the above discussion, we establish identity (B3) by first intro­

ducing a "suitable" counting problem. We then count the problem in 
two different ways so as to obtain two different expressions. These two 
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different expressions must be equal as they count the same quantity. 
This way of deriving an identity is quite a common practice in com­
binatorics, and is known as "counting it twice". 

Exercise 

11.1 By applying Identity (10.5) or otherwise, show that 

k=r 

11.2 Show that 
n - 1 

£(V)-
fc=0 V y 

o2n-2 

11.3 Show that 

by integrating both sides of (1 + x)n = "^2^=0 (fc)3^ w**n r e s P e c t 
to x. 

11.4 Show that 

f>s(Y)=n(n+1)2"-*. 
fc=l v J 

11.5 Solve Example 11.2 by using result (7.1)(ii). 
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Chapter 12 

Pascal's Triangle 

In Chapter 10, we established the Binomial Theorem (BT) which states 
that for all nonnegative integers n, 

(i+*>B=E(?y 
r=0 ^ ' 

Let us display the binomial coefficients row by row following the 
increasing values of n as shown in Figure 12.1. We observe from 
Figure 12.1 the following. 

1. The binomial coefficient at a lattice point counts the number of 
shortest routes from the top lattice point (representing (g)) to the 
lattice point concerned. For example, there are (2) (= 6) shortest 

Figure 12.1 

85 
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routes from the lattice point representing (Q) to the lattice point (2) 
(also see Example 5.1). 

2. The number pattern is symmetric with respect to the vertical line 
through the top lattice point, and this observation corresponds to 
the identity (?) = ( ^ r ) (see (10.2)). 

3. Any binomial coefficient represented by an interior lattice point is 
equal to the sum of the two binomial coefficients represented by the 
lattice points on its "shoulders" (see Figure 12.2). This observation 
corresponds to the identity (?) = (?~J) + (n;1) (see (10.3)). 

Figure 12.2 

4. The sum of the binomial coefficients in the nth row is equal to 2n 

and this fact corresponds to the identity 

The number pattern of Figure 12.1 was known to Omar Khayyam 
and Jia Xian around 1100 AD. The pattern was also found in the book 
written by the Chinese mathematician Yang Hui in 1261, in which Yang 
Hui called it, the Jia Xian triangle. The number pattern in the form 
of Figure 12.3 was found in another book written by another Chinese 
mathematician Zhu Shijie in 1303. 

However, the number pattern of Figure 12.1 is generally called 
Pascal's Triangle in memory of the great French mathematician Blaise 
Pascal (1623-1662) who also applied the "triangle" to the study of 
probability, a subject dealing with "chance". For a history of this number 
pattern, readers are referred to the book Pascal's Arithmetical Triangle 
by A. W. F. Edwards (Oxford University Press (1987)). 
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M $ & * & % 

At^k^m <wk%*k*&m>m 

Figure 12.3 

Blaise Pascal 

Look at Pascal's triangle of Figure 12.4. 
What is the sum of the six binomial coefficients enclosed in the 

shaded rectangle? The answer is 56. Note that this answer appears 
as another binomial coefficient located at the right side of 21 in the 
next row. Is this situation just a coincidence? Let us take a closer look. 
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1 
1 

1 8 

l 

7 

Observe that 

1 

6 

28 

1 

5 

21 

1 

4 

IS 

56 

1 

3 

10 

35 

2 

6 

20 

70 

1 

3 

10 

35 

Figure 12.4 

1 

4 

15 

56 

1 

5 

21 

1 

6 

28 

1 

7 
1 

8 

. + . + . + » + » + »-G) + G) + G) + G) + ( ; ) + G) 
-G)*G)+G)+G)*G)+G) 

(- G) • G)) 
-G)*G)*G)*G)+G) 
-G)+G)*G)*G) 
-G)+G)+G) 
- G M D 
-G) (=56) 

by applying the identity (£} ) + (n ;x) = (?). 
The above result is really a special case of a general situation. As 

a matter of fact, the above argument can also be used to establish the 
following general result (also see Figure 12.5): 
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Figure 12.5 

Figure 12.6 

(B4) 

By the symmetry of Pascal's triangle, one obtains the following accom­
panying identity of (B4) (also see Figure 12.6): 

(k\ 
+ 

fk + l> 

K A ; + • f 
• + 

(k + m\ 
= 

{ m J 

fk + m + l\ 
= ( 

\ m ) 
(B5) 

To end this chapter, we show an application of identity (B4) in 
the solution of the following problem which appeared in International 
Mathematical Olympiad 1981. 



90 Counting 

Example 12.1 Let 1 < r < n and consider all r-element subsets of 
the set {1 ,2 , . . . ,n}. Each of these subsets has a smallest member. Let 
F(n, r) denote the arithmetic mean of these smallest numbers. Prove 
that 

n + 1 
F(n,r) = 

r+1 

Solution As an illustration of this problem, we consider the case 
when n = 6 and r = 4. There are (^) (= 15) 4-element subsets of 
the set {1,2,3,4,5,6}. They and their "smallest members" are listed in 
Table 12.1. 

Table 12.1 

4-element subsets of {1, 2 , . . . , 6} 

{1, 2, 3, 4} 
{1, 2, 3, 5} 
{1, 2, 3, 6} 
{1, 2, 4, 5} 
{ 1 , 2 , 4 , 6 } 
{1, 2, 5, 6} 
{1, 3, 4, 5} 
{1, 3, 4, 6} 
{1, 3, 5, 6} 
{1, 4, 5, 6} 
{2, 3, 4, 5} 
{2, 3, 4, 6} 
{2, 3, 5, 6} 
{2, 4, 5, 6} 
{3, 4, 5, 6} 

Smallest member 

2 
2 
2 
2 
3 

By definition, 

F(6,4) = (10 • 1 + 4 • 2 + 1 • 3) -r-15 

_ 7 

and this is equal to j^± when n = 6 and r = 4. 
Write Nn = { 1 , 2 , . . . , n } . To evaluate F(n,r), it is clear that we 

need to first find out 
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1. which numbers in Nn could be the smallest member of an r-element 
subset of Nn (in the above example, these are 1, 2, 3 but not 4, 5, 
6), and 

2. how many times such a smallest member occurs (in the above 
example, 1 occurs ten times, 2 four times and 3 once); 

and then sum these smallest numbers up, and finally divide by ("), the 
number of r-element subsets of Nn , to obtain the "average". 

The last r elements (according to the magnitude) of the set Nn are: 

n — r + l , n — r + 2 , . . . , n — r + r ( = n) . 

It follows that n — r +1 is the largest possible number to be the smallest 
member of an r-element subset of Nn . Hence, 1,2,3,... ,n — r + 1 are 
all the possible candidates to be the smallest members of r-element 
students of Nn . 

Let k € {1 ,2 ,3 , . . . , n —r+1}. Our next task is to find out how many 
times k occurs as the smallest member. To form an r-element subset 
of Nn containing k as the smallest member, we simply form an (r — 1)-
element subset from the (n—fc)-element set {ft+1, k+2,... ,n} and then 
add k to it. The number of (r —l)-element subsets of {k+1, k+2,... ,n} 
is given by ("I*). Thus, k occurs ("!*) times as the smallest member. 
Let S denote the sum of all these smallest members. Then, as k = 
1,2,.. . , n — r + 1, we have 

s=>(::;)+<;-"0+3("-)+••••<-—>(-(;:r+1)) 
- ( . - ,+«(;:i)+-+ . ( ;:;)+ . ( ;:j)+ i (;:}) 

+ 

+ 

)+-+(;:1')+(;:;)+(::i)l 
+ ••• + 

+ ••• + 

) • 

n — r + l rows of 
summands 
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Now, by applying (B4) to each summand above except the last one 
and noting that (£"}) = (£), E can be simplified to 

n \ / n — l \ fr 
r) V r J \r 

n—r+1 

By applying (B4) once again, we have 

n + 1 
r + 1 

Finally, by definition of F(n,r), it follows that 

'n\ / n + l \ (n 
F(n , r ) = E + . . . , . . . 

(n + 1)! r\(n-r)\ 

(r + l)!(n - r)! n! 

_ n + 1 
_ r + 1 

as desired. D 

Exercise 

12.1 Find the coefficient of x5 in the expansion of 

(l + x)5 + (l + x)6 + --- + (l + x) 1 0 0 . 

12.2 Consider the rows of Pascal's Triangle. Prove that if a row is 
made into a single number by using each element as a digit of 
the number (carrying over when an element itself has more than 
one digit), the number is equal to l l n _ 1 . (For example, from the 
first row 1 = 11°, from the second row 11 = l l 1 , from the third 
row 121 = l l 2 , and from the 6th row 15(10)(10)51 = 15(11)051 = 
161051 = l l 5 . ) 

12.3 On the r th day of an army recruitment exercise, r men register 
themselves. Each day, the recruitment officer chooses exactly 
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k of the men and line them up in a row to be marched to the 
barracks. Show that the sum of the numbers of all the possible 
rows in the first 2k days is equal to the number of possible rows 
in the (2k + l)th day. 

4 The greatest integer not exceeding a real number x is denoted by 
[x\. Show that 

(i) ( ? ) < ( J ) i f o < i < i < L f J ; 
(ii) (?) > © if Lf J <i<j<n, with equality if and only if 

* = LfJjJ = Lf J + ! anc* n is odd. 

5 Evaluaten! + ^ + ^ + . . . + ^ + . . . + g$. 
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Chapter 13 

Miscellaneous Problems 

1 One commercially available ten-button lock may be opened by 
depressing — in any order — the correct five buttons. The sam­
ple shown below has {1,2,3,6,9} as its combination. Suppose 
that these locks are redesigned so that sets of as many as nine 
buttons or as few as one button could serve as combinations. 
How many additional combinations would this allow? 

EZ~3 ^ 

CZD CZZI io 

(AIME) 
2 Calculate in how many ways each of the following choices can 

be made. 

(i) 4 books are to be chosen from a list of 10 titles to be taken 
away for reading during a holiday. 

(ii) 20 people have sent in winning entries for a newspaper 
competition, and three are to be chosen and placed in order 
of merit so as to receive the 1st, 2nd and 3rd prizes. 

l 

2 

3 

4 

5 

95 
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(iii) A team of 6 people is to be chosen from a list of 10 possibles; 
the team consists of a 1st pair, a 2nd pair and a 3rd pair, 
but order within each pair does not matter. 

(C) 

3 A society is planning a ballot for the office of president. There 
are 5 candidates for the office. In order to eliminate the order 
of the candidates on the ballot as a possible influence on the 
election, there is a rule that on the ballot slips, each candidate 
must appear in each position the same number of times as any 
other candidate. What is the smallest number of different ballot 
slips necessary? 

4 In the waiting area of a specialist clinic, patients sit on chairs 
arranged 10 to a row with an aisle on either side. Ten patients 
are sitting in the second row. How many ways are there for all 
the patients in the second row to see the doctor if at least one 
patient has to pass over one or more other patients in order to 
reach an aisle? 

5 In how many ways can 4 a's, 4 6's, 4 c's and 4 d's be arranged in 
a 4 x 4 array so that exactly one letter occurs in each row and in 
each column? (Such an arrangement is called a Latin square.) 

6 A card is drawn from a full pack of 52 playing cards. If the card 
is a King, Queen or Jack, two dice are thrown and the total T 
is taken to be the sum of the scores on the dice. If any other 
card is drawn, only one die is thrown and T is taken to be the 
sum of the scores on the card (an Ace is considered as 1) and 
the die. Find the number of ways for each of the following: 

(i) T < 2; 
(ii) T > 13; 

(iii) T is odd. 

7 In each of the following 5-digit numbers 

25225,33333, 70007,11888,... 

every digit appears more than once. Find the number of such 
5-digit numbers. 
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8 The following list contains some permutations of Ng in which 
each of the digits 2, 3, 4 appears in between 1 and 9: 

814736259,569324178,793548216,.... 

Find the number of such permutations of Ng. 
9 The following list contains some permutations of Ng in which 

each of the digits 1, 2, 3 appears to the right of 9: 

458971263,695438172,854796123,.... 

Find the number of such permutations of Ng. 
10 Find the number of 0's at the end of 1 x 2 x 3 x • • • x 2002. 
11 Find the number of 15-digit ternary sequences (formed by 0, 1 

and 2) in each of the following cases: 

(i) there is no restriction; 
(ii) there are exactly three 0's; 

(iii) there are exactly four 0's and five l's; 
(iv) there are at most two 0's; 
(v) there is at least one pair of consecutive digits that are the 

same; 
(vi) there are exactly one "00", three "11", three "22", 

three "02", two "21" and two "10" (for instance, 
002211102221102). 

12 Find the number of (i) positive divisors (ii) even positive divisors 
of 2160. 

13 Find all natural numbers which are divisible by 30 and have 
exactly 30 different divisors. 

14 Consider the following grid: 

I I — 

Ri 

— < > 
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Find in the grid 

(i) the number of shortest P-R routes; 
(ii) the number of shortest P-Q routes. 

13.15 The following figure shows 10 distinct points on the circumfer­
ence of a circle. 

(i) How many chords of the circle formed by these points are 
there? 

(ii) If no three chords are concurrent within the circle, how 
many points of intersection of these chords within the circle 
are there? 

13.16 In a shooting match, eight clay targets are arranged in two hang­
ing columns of three each and one column of two, as pictured. 

A marksman is to break all eight targets according to the fol­
lowing rules: 

(1) The marksman first chooses a column for which a target is 
to be broken. 
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(2) The marksman must break the lowest remaining unbroken 
target in the chosen column. 

If these rules are followed, in how many different orders can the 
eight targets be broken? 

(AIME) 
17 Six scientists are working on a secret project. They wish to lock 

up the documents in a cabinet such that the cabinet can be 
opened when and only when three or more of the scientists are 
present. What is the smallest number of locks needed? What 
is the smallest number of keys each scientist must carry? 

18 A team for a boxing competition consists of a heavyweight, a 
middleweight and a lightweight. There are 5 teams in the com­
petition. 

(i) If each person fights with each person of a similar weight 
class, how many fights take place? 

(ii) At the end of the competition, everyone shakes hands 
exactly once with every other person, except his teammates 
(they have to tend to each other's wounds later). How many 
handshakes take place? 

19 Find the number of paths in the array which spell out the word 
COUNTING. 

c 
o 
u 
o 
c 

c 
0 

u 
N 
U 

o 
c 

c 
o 
u 
N 
T 
N 
U 
0 

c 

c 
0 

u 
N 
T 
I 
T 
N 
U 
0 
c 

c 
o 
u 
N 
T 
I 
N 
I 
T 
N 
U 
0 
c 

c
o

n 

N 
T 
I 
N 
G 
N 
I 
T 
N 
U 
0 
c 

c 
0 
u 
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T 
I 
N 
I 
T 
N 
U 
0 
c 

c 
o 
u 
N 
T 
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T 
N 
U 
O 

c 

c 
o 
u 
N 
T 
N 
U 
O 

c 

c 
0 

u 
N 

u 
o 
c 

c 
0 

u 
o 
c 

20 Let A = {1,2,...,500}. Find 

(i) the number of 2-element subsets of A; 
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(ii) the number of 2-element subsets {a, b} of A such that a • b 
is a multiple of 3; 

(iii) the number of 2-element subsets {a, b} of A such that a + b 
is a multiple of 3. 

21 There are 7 ways to divide 4 distinct objects a, b, c, d into two 
nonempty groups as shown below: 

{a, b, c} U {d}, {a, b, d} U {c}, {a, c, d} U {b}, {b, c, d} U {a} , 

{a, b} U {c, d], {a, c} U {b, d}, {a, d} U {b, c} . 

How many ways are there to divide n distinct objects, where 
n > 2, into two nonempty groups? 

22 Two integers p and q, with p > 2 and q > 2, are said to be 
coprime if p and g have no common prime factor. Thus 8 and 
9 are coprime while 4 and 6 are not. 

(i) Find the number of ways to express 360 as a product of 
two coprime numbers (the order of these two numbers is 
unimportant), 

(ii) In general, given an integer n > 2, how do you find the 
number of ways to express n as a product of two coprime 
numbers where the order is immaterial? 

23 The lattice points of the following m x n(n < m) grid are named 
as shown: 

(0,n) (!,«) (2,n) (m-1, ri) (m, ri) 

(0,2) 

1 i 

i ( 1 , 

I i 

2) (2, 

i 

2) 

1 

(/n-1 

i 1 

, 2 ) i 

(0, D'1 

1 » 

( 1 , 

» « 

1 i 

1) (2, 

i < 

i 

1) 

i 

(0,0) (1,0) (2,0) 

(m-1 1) 

(m, 2) 

(m, 1) 

(m-1 ,0 ) (jfi,0) 
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For k € {1, 2 , . . . , n), let p be the number of shortest (k, k — 1)-
(m, n) routes and q be the number of shortest (k — 1, k)-(m, n) 
routes. Show that p(n + 1 — k) = q(m + 1 — k). 

24 The face cards (Kings, Queens and Jacks) are removed from 
a pack of playing cards. Six cards are drawn one at a time 
from this pack of cards such that they are in increasing order of 
magnitude. How many ways are there to do this? 

25 There are 12 coins on a table. I pick up a number (non-zero) of 
coins each time. Find the number of ways of picking up all the 
12 coins in the following cases: 

(i) I pick up all the 12 coins in an even number of picks, 
(ii) I pick up an even number of coins each time. 

26 Find the number of 4-tuples of integers 

(i) (a, b, c, d) satisfying 1 < a < b < c < d < 30; 
(ii) (p, q, r, s) satisfying l < p < g < r < s < 3 0 . 

27 Consider the following two 15-digit ternary sequences (formed 
by 0, 1 and 2): 

000111220011222 

012220000111122 

Observe that each of the sequences contains exactly three 00, 
three 11, three 22, two 01, two 12 and one 20. Find the number 
of such ternary sequences. 

28 There are n upright cups in a row. At each step, I turn over 
n — 1 of them. Show that I can end up with all the cups upside 
down if and only if n is even. Find the number of ways this can 
be done in a minimum number of steps. 

29 The following diagram shows 15 distinct points: toi, W2, u>3, 
xi,..., X4, y\,..., y6, z\, Z2 chosen from the sides of rectangle 
ABCD. 

(i) How many line segments are there joining any two points 
each on different sides? 

(ii) How many triangles can be formed from these points? 
(iii) How many quadrilaterals can be formed from these points? 
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M>i W2 W3 D 

Z24 

Z\\ 

,Xi 

,x2 

X4 

B y* ys y* J3 yi y\ 

(iv) If no three line segments are concurrent in the interior of 
the rectangle, find the number of points of intersection of 
these line segments in the interior of rectangle ABCD. 

13.30 A ternary sequence is a sequence formed by 0, 1 and 2. Let n be 
a positive integer. Find the number of n-digit ternary sequences 

(i) which contain at least one "0"; 
(ii) which contain one "0" and one " 1 " ; 

(iii) which contain three 2's. 

13.31 Each of the following six configurations consists of 4 vertices 
w,x,y,z with some pairs of vertices joined by lines. We are 
now given five colours 1, 2, 3, 4, 5 to colour the 4 vertices such 
that 

(1) each vertex is coloured by one colour and 

(iii) 

-0 
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(2) any two vertices which are joined by a line must be coloured 
by different colours. 

How many different ways are there to colour each configuration? 

32 If repetitions are not allowed, find the number of different 5-digit 
numbers which can be formed from 0,1 ,2 , . . . , 9 and are 

(i) divisible by 25; 
(ii) odd and divisible by 25; 

(iii) even and divisible by 25; 
(iv) greater than 75000; 
(v) less than 75000; 

(vi) in the interval [30000, 75000] and divisible by 5. 

33 There are 12 boys and 8 girls, including a particular boy B and 
two particular girls G\ and G2, in a class. A class debating team 
of 4 speakers and a reserve is to be formed for the inter-class 
games. Find the number of ways this can be done if the team 
is to contain 

(i) 
(ii) 

(iii) 
(iv) 

(v) 
(vi) 

(vii) 
(viii) 

(ix) 

(x) 

exactly one girl; 
exactly two girls; 
at least one girl; 
at most two girls; 

Gi; 
no B; 
B and G\\ 
neither B nor G\\ 
exactly one from G\ and Gi\ 
an odd number of girls. 

34 A group of 6 people is to be chosen from 7 couples. Find the 
number of ways this can be done if the group is to contain 

(i) three couples; 
(ii) no couples; 

(iii) exactly one couple; 
(iv) exactly two couples; 
(v) at least one couple. 
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Find the number of ways in which 6 people can be divided into 

(i) 3 groups consisting of 3, 2, and 1 persons; 
(ii) 3 groups with 2 persons in each group; 

(iii) 4 groups consisting of 2, 2, 1 and 1 persons; 
(iv) 3 groups with 2 persons in each group, and the groups are 

put in 3 distinct rooms. 
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Answers to Exercises 

1.1 
1.3 
1.6 
1.9 
2.2(ii) 
2.3(iii) 
2.5(ii) 
2.6(i) 
3.4 

4.1(vii) 

4.1(x) 

4.1(xii) 

4.2(iv) 

4.4(i) 

4.4(iv) 

4.5 (iii) 

4.7(i) 

4.8(i) 

4.8 (iii) 

4.10(ii) 

6 
6 n - 4 
60 
14 
15 
rant 
2n 

47 
(n + 1)! - 1 

9!3! 

8!9 • 8 • 7 

2 - 4 - 5 - 6 - 7 - 8 - 9 - 1 0 -

392 

(S) 
( e ) + 5 ( s ) + < : ) + (! 
7! • 8 • 7 • 6 

5! 

fflQ 
(?) - (s) 
p i o 

1.2 
1.4 
1.7 
2.1 
2.3(i) 
2.4 
2.5(iii) 
2.6(ii) 
4.1(v) 

4.1(viii) 

4.1(xi) 

11 

4.2(v) 

4.4(H) 

) 4.5(1) 

4.5(iv) 

4.7(ii) 

4.8(ii) 

4.9 

1, 5, 14, 55, 
29 
31 
90 
20 
30 
2""1(l + n) 

205 
2-9! 

7!5! 

5!4!2 

1823 

5(S) 
10! 

7!3!70 

4!2! 

(?) - (Q 
9- io i -VJ 

4.10(iii) ( ? ) g ) g ) 

2 ^ r = l r 

1.5 
1.8 
2.2(i) 
2.3(ii) 
2.5(i) 
2.5(iv) 
2.6(iii) 
4.1(vi) 

4.1 (ix) 

4.2 (iii) 

4.3 

4.4(iii) 

4.5(ii) 

4.6 

4.7(iii) 

27 
29 
6 
mn 
3 n 

n2 + n + 

378 
2-8! 

2 • 5!6! 

1008 

9 - 7 - 5 - 3 

4(2) 
8!3! 

7 - 5 - 3 

2!fi)3! 

+ 0 (S + (Dffl) 
4.io(o m 
4.11 162 

107 
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4.12(1) (?) 4.12(H) ft°)g)g) 4.13(i) 405 

4.13(H) 90 4.14 g) 4.14(i) g)g) 
4.14(11) 2©g) 4.15(a) (J) (J) 
4.15(b) g)g)0 + g)G)C), 225.4-3.2 
5.1(a)(1) 60 5.1(a)(ii) 36 
5.1 (b) By FTA, express n as n = p™1?™2 • • • p™k. Then number of 

positive divisors is ni=i(m* + -0-
5.2(1) g)g) 5.2(11) " g)g) 5.2(111) ©(})© 

5.2(iv) (»)-ff lff lB.6 Q g ) 5.7 ffl 
6.1 g) 6.2 5! • 6 • 5 • 4 • 3 6.3 2 • $ 

6-4 ft2) 7.1(1) (54
5) 7.1(11) (4

4
7)' 

7.1(111) ( « ) - ( « ) 7.1(iv) (?)(«) 7.1(v) (2
4
7),0 

7.2(1) (? )_ (» ) 7.2(H) (?) 7.3(1) Q g) 

7.3(11) g)3 7.4(1) (33
3) 7.4(H) ft1) - (?) 

7.4(111) (33
6) 7.5 (20f) 

7.6 ( ? ) + ( ? ) + © 7.7 r ; - 1 ) 
7-8 Gil) 7.9 ff)7.10 g)(J) 
7.12 4! 7.13(1) 4!5! 7.13(H) 4!2 
7.13(111) 4!25 7.13(iv) 5!5! 7.14(1) 7! 
7.14(H) 3!4!7 7.15(1) 4!2! 7.15(H) 4-3-4! 
8.1(1) 96 8.1(H) P% 8.3 (i) 84 

8.3(H) 7* 8.4 fflg)g)3+g)g)g)3 
8.5(1) n! 8.5(H) (n+l) n! 

8.5(111) r f ) n ! + I ( n f ) ( 2 ) ^ 9-1 ^ 
J L 9.3(H) (yjft1) 
nm 9.4(H) P£ 

n™"1 9 .5( i ) n! 

n!,n(n + 1)!, n(n + 2)! + Q)(n + 2)! 

9.2 

9.3 (Hi) 

9.4(iii) 

9.5(H) 

9.6 

S! 5! 
3!2!' 2! 

ft?)® 
C) 
("?>! 

4 i o 

9.3(i) 

9.4(1) 

9.4(iv) 

9.5(iii) 

9.7 



Answers to Exercises 109 

10.2 25 10.3 k = 3; (1 + x)14; ft), ft), ft) 

12-1 (T) 12-5 (Sgyr 13.1 2" - 2 - ft) 
13.2(1) ft) 13.2(11) P 2 ° 13.2(111) ffiQg) 

13.3 5 13.4 10!-2 9 13.5 576 

13.6(1) 16 13.6(11) 40 13.6(iii) 336 

13.7 813 13.8 2!3!6-7-8-9 

13.9 315-6-7-8-9 13.10 499 

13.11(1) 315 13.11(11) ft)212 13.11(111) ft) ft) 

13.11(iv) 215 + 15 • 214 + ft)213 13.11(v) 315 - 3 • 214 

13.11(vi)120 13.12(i) 40 13.12(H) 32 

13.13 2 • 32 • 54,2 • 34 • 52,22 • 3 • 54,22 • 34 • 5,24 • 32 • 5,24 • 3 • 52 

13.14(1) © 13.14(11) Qffl + Offl + fflffl 

13.15(1) ft) 13.15(11) ft) 13.16 i 

13.17 15, 10 13.18(i) 3g) 13.18(H) ft) - 5(3) 

13.19 4 - 2 7 - 4 13.20(i) (50,°) 

13.20(11) ft6) + ft6) (334) 13.20(111) (166) + ft6) ft7) 

13.21 2 n - 1 - l 13.22(i) 3 

13.22(H) By FTA, express n as n = pfx p™2 • • -p™*. Then number 

of ways is 2k~1 - 1. 13.24 ft0) 46 

13.25(i) 210 13.25(H) 25 13.26(1) ft) 

13.26(H) ft) 13.27 64 13.28 (n - 1 ) ! 

13.29(1) ft) - ((3) + (4) + g) + (
2)) 

13.29(11) ft) - (g) + Q + ffi) 

13.29(111) ft) - ( l2@ + llffl + 9g) + (J) + 0 ) 

13.29(iv)ft^)-(l2(3) + ll(4)+9© + (4) + («)) 

13.30(1) 3 n - 2n 13.30(H) n(n - 1) 13.30(iii) (!}) 2 n - 3 

13.31(1) 5 - 4 3 13.31(H) 5 • 4 3 13.31 (Hi)5 • 42 • 3 



110 Counting 

13.31(iv) 
13.32(i) 
13.32(iii) 
13.32(v) 
13.32(vi) 
13.33(i) 

13.33(ii) 

13.33(iii) 

13.33(iv) 

13.33(v) 

13.33(vii) 

13.33(ix) 

13.33(x) 

13.34(i) 

13.34(iv) 

13.35(H) 

4 • 13 13.31(v) 
7 - i 

7-
9-
8-

13.31(vi) 
13.32 (ii) 

4 - 8 - 7 - 6 + 2 - 9 - 8 - 7 - I 
7-6 + 2 - 9 - 8 - 7 - 6 ) 

5 
7-

5 • 4 • 32 

6 + 7 - 7 - 6 - 2 
6 13.32(iv) 
8 • 7 • 6 - (4 • 8 
7 .6 + 9 - 7 - 6 

(?)© + (?) ft1)© 
ft^fflffl + Cflft1)® 
(DftVfiK) 
(\2) ft1) + ft2) ® + ft2) ft1) ® + ft2) ® (I) + ft2) ft1) ® 
ft9) ft6) + ft9) 13.8S(vi) (»)(?) 
2ft8) + ft8) ft7) 13.33(viii) (»)ff) 

2(ft8)ft5) + ft8)) 
ft2) (!) + ft2) ft1) (!) + ft2) ® (?) + ft2) ft1) © + ft2) (!) 
© 13.34(ii) (J) 2* 13.34(iii) (J)(J)2* 
Q®2»13.S4(v) (?) - Q*» 13.35(i) g) Q 

mm 
3! 

13.35(iii) WE) 
2!2! 

13.35(iv) ®g) 



Index 

Addition Principle, 1, 2, 11 

bijection, 35, 37, 39, 41, 42, 44-46, 48, 
53, 55, 59, 65, 77, 79 

Bijection Principle (BP), 37 
binomial coefficient, 85-87 
Binomial Theorem, 76, 85 

combination, 23, 95 
r-, 23 

distribution problem, 48, 49, 63, 67, 69 

Fundamental Theorem of 
Arithmetic, 43 

injection, 37 
Injection Principle, 37 

mapping, 35-38, 40, 44, 45 
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COUNTING 
This book is a useful, attractive introduction to basic 

counting techniques for upper secondary and junior 

college students, as well as teachers. Younger students 

and lay people who appreciate mathematics, not to 

mention avid puzzle solvers, will also find the book 

interesting. The various problems and applications 

here are good for building up proficiency in counting. 

They are also useful for honing basic skills and 

techniques in general problem solving. Many of the 

problems avoid routine and the diligent reader will 

often discover more than one way of solving a 

particular problem, which is indeed an importan 

awareness in problem solving. The book thus help; 

to give students an early start to learning proble 

solving heuristics and thinking skills. 
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